Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure-building cell signals also may influence learning, memory

11.04.2005


Ephrins may influence learning



A Burnham Institute study has found that one of the cell’s largest families of signaling molecules, called ephrins, which are known to regulate the development of nerve cells, also controls nerve cells’ ability to engulf critical chemicals and proteins for learning and memory. These findings, the first to link these molecular semaphores to this important nerve cell function, appear in the May issue of Nature Cell Biology, published in advance at the journal’s website on April 10th.

While the study’s results are not immediately applicable to treating disease, they pave the way for future experiments on the roles played by ephrins in memory, learning, and other nerve cell functions, and potentially even in certain cancers.


By inserting chicken ephrin genes into rat cells, Fumitoshi Irie, Ph.D., Professor Yu Yamaguchi, M.D., Ph.D., and their colleagues found that when the ephrin subtype EphrinB activated its EphB receptor, a cascading chemical pathway was triggered that ultimately stimulated an enzyme called synaptojanin-1. This enzyme is essential for a process known as cellular endocytosis, whereby certain chemicals, viruses or other agents are surrounded with a snippet of the cell’s membrane. Endocytosis important as it is the process by which cells take up materials such as neurotransmitters, fat molecules, and foreign bodies like viruses and toxins, from the external environment thus enabling the cell to store, transport or eliminate these materials.

Synaptojanin-1 enables endocytosis when it disassembles a molecular coating on storage vesicles, which allows the cell to continue making new vesicles as needed. "This was a new pathway for ephrin," said Yamaguchi. "Ephrin has been intensively studied for many years, with most attention being paid to its maintenance of the cell’s skeletal structure during development."

Once the biochemical pathway was determined, the researchers then looked at whether ephrin truly increased endocytosis in cells that were not altered genetically. Using rat brain cells, they found that increased signaling did indeed create more vesicles in normal cells. Most important, these new vesicles were important parts of nerve cell synapses, the sophisticated communication relay used in the nervous system.

"We looked at the glutamate receptors at the cell synapse, and depending on other activity, ephrin appeared to decrease the number of glutamate receptors," said Yamaguchi. The regulation of glutamate receptors is crucial to maintaining memory and learning. The strength of a signal through a nerve cell synapse can be enhanced (by increasing the number of receptors) or diminished (by a receptor decrease). "The balance has to be optimal, since too much memory activation can also be a problem," said Yamaguchi.

Yamaguchi’s team, which worked on this project for more than two years, had suspected that ephrins played some important part in nerve cell synapse function. Previous studies had shown that animals injected with addictive drugs had activated EphB receptors, and that there is a connection between synaptojanin-1 and bipolar disorders and schizophrenia. Until now, nobody had made the connection between EphB and the endocytosis involved in neurotransmitter regulation.

"There’s also an increased interest in endocytosis in cancer, in which the process may help diminish anti-proliferation signals and, as a result, trigger tumor progression," said Yamaguchi. "But this is a novel finding in biology, and we can only just begin to speculate on the broader implications of Ephrin and EphB’s activity."

Yamaguchi is a professor of developmental neurobiology at the Burnham Institute, where his research zeros in on the structure and activity of nerve cell synapses. Irie, the lead author of the paper, is a staff scientist in Yamaguchi’s laboratory. Their colleagues included Misako Okuno in Yamaguchi’s laboratory and Elena Pasquale, who also is a professor of developmental neurobiology at Burnham. Pasquale is an internationally known expert in ephrins and their receptors, and Yamaguchi and Pasquale have been collaborating for more than 5 years to elucidate the function of ephrins and their receptors in nerve cells.

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>