Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure-building cell signals also may influence learning, memory

11.04.2005


Ephrins may influence learning



A Burnham Institute study has found that one of the cell’s largest families of signaling molecules, called ephrins, which are known to regulate the development of nerve cells, also controls nerve cells’ ability to engulf critical chemicals and proteins for learning and memory. These findings, the first to link these molecular semaphores to this important nerve cell function, appear in the May issue of Nature Cell Biology, published in advance at the journal’s website on April 10th.

While the study’s results are not immediately applicable to treating disease, they pave the way for future experiments on the roles played by ephrins in memory, learning, and other nerve cell functions, and potentially even in certain cancers.


By inserting chicken ephrin genes into rat cells, Fumitoshi Irie, Ph.D., Professor Yu Yamaguchi, M.D., Ph.D., and their colleagues found that when the ephrin subtype EphrinB activated its EphB receptor, a cascading chemical pathway was triggered that ultimately stimulated an enzyme called synaptojanin-1. This enzyme is essential for a process known as cellular endocytosis, whereby certain chemicals, viruses or other agents are surrounded with a snippet of the cell’s membrane. Endocytosis important as it is the process by which cells take up materials such as neurotransmitters, fat molecules, and foreign bodies like viruses and toxins, from the external environment thus enabling the cell to store, transport or eliminate these materials.

Synaptojanin-1 enables endocytosis when it disassembles a molecular coating on storage vesicles, which allows the cell to continue making new vesicles as needed. "This was a new pathway for ephrin," said Yamaguchi. "Ephrin has been intensively studied for many years, with most attention being paid to its maintenance of the cell’s skeletal structure during development."

Once the biochemical pathway was determined, the researchers then looked at whether ephrin truly increased endocytosis in cells that were not altered genetically. Using rat brain cells, they found that increased signaling did indeed create more vesicles in normal cells. Most important, these new vesicles were important parts of nerve cell synapses, the sophisticated communication relay used in the nervous system.

"We looked at the glutamate receptors at the cell synapse, and depending on other activity, ephrin appeared to decrease the number of glutamate receptors," said Yamaguchi. The regulation of glutamate receptors is crucial to maintaining memory and learning. The strength of a signal through a nerve cell synapse can be enhanced (by increasing the number of receptors) or diminished (by a receptor decrease). "The balance has to be optimal, since too much memory activation can also be a problem," said Yamaguchi.

Yamaguchi’s team, which worked on this project for more than two years, had suspected that ephrins played some important part in nerve cell synapse function. Previous studies had shown that animals injected with addictive drugs had activated EphB receptors, and that there is a connection between synaptojanin-1 and bipolar disorders and schizophrenia. Until now, nobody had made the connection between EphB and the endocytosis involved in neurotransmitter regulation.

"There’s also an increased interest in endocytosis in cancer, in which the process may help diminish anti-proliferation signals and, as a result, trigger tumor progression," said Yamaguchi. "But this is a novel finding in biology, and we can only just begin to speculate on the broader implications of Ephrin and EphB’s activity."

Yamaguchi is a professor of developmental neurobiology at the Burnham Institute, where his research zeros in on the structure and activity of nerve cell synapses. Irie, the lead author of the paper, is a staff scientist in Yamaguchi’s laboratory. Their colleagues included Misako Okuno in Yamaguchi’s laboratory and Elena Pasquale, who also is a professor of developmental neurobiology at Burnham. Pasquale is an internationally known expert in ephrins and their receptors, and Yamaguchi and Pasquale have been collaborating for more than 5 years to elucidate the function of ephrins and their receptors in nerve cells.

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>