Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microarrays as phenotype

11.04.2005


Microarrays provide a method of quantifying the expression and order of genes in a particular genome -- acting as a surrogate measure of cell physiology, said researchers at Baylor College of Medicine in a report that appears online today in the journal Nature Genetics.



"Microarray data are good phenotypes to determine the order of genes and are a good surrogate measure of cell status," said Dr. Gad Shaulsky, associate professor of molecular and human genetics at BCM.

Microarrays are fairly new technology that can help scientists understand how genes interact as well as how they are regulated by networks within the cell. They are created by the placement of tiny droplets of functional DNA on glass slides. Then researchers attach fluorescent labels to nucleic acids (DNA or RNA) from the cells under study. These labeled nucleic acids are allowed to bind to the DNA on the slides. Researchers then use a microscope to measure how much of a specific nucleic acid is present.


Genotype is the genetic fingerprint of a particular cell. Phenotype is the outward manifestation of the genotype. For example, a person may have genes for eye color. That is that individual’s genotype. Blue eyes is the phenotype.

The microarray data Shaulsky and his collaborators used show that they can determine the order in which genes act in a cascade that results in a particular phenotype.

Shaulsky and his co-authors performed their work in Dictyostelium (Dictyostelium discoideum), a form of soil amoeba used in the laboratory because many of its 10,000 genes are homologues or equivalents of genes found in humans.

Using microarray data alone, they determined the orders in which genes function in a particular pathway in that organism. The protein kinase A (PKA) signaling pathway occurs when the organism encounters starvation. The pathway enables the single cells to combine into a multi-cell organism.

"We pretended we did not know the order of genes in the pathway," said Shaulsky. "We were able to reconstruct the pathway from the microarray data. This means the microarray provides a good phenotype that is quantitative. We can prove that gene A comes before gene B and give mathematical support for these findings."

"This is a proof of principle that we set out to do – assessing the function of unknown genes is feasible," said Shaulsky. "It can be done with a microarray phenotype."

Others who participated in the research included Drs. Nancy Van Driessche, Ezgi O. Booth, Paul Hill and Adam Kuspa, all of Baylor College of Medicine; and Janez Demsar, Peter Juvan and Blaz Zupan of the Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Life Sciences:

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

nachricht Calcium may play a role in the development of Parkinson's disease
19.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>