Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers improve design of genetic on-off switches

08.04.2005


Researchers at the University of Illinois at Urbana-Champaign have set a new standard in the design and engineering of nuclear hormone receptor-based genetic on-off switches, without causing new problems or aggravating existing ones.



The new technique, published online ahead of regular publication by the Proceedings of the National Academy of Sciences, combines the advantages of directed evolution and computationally driven rational design, said Huimin Zhao, a professor in the department of chemical and biomolecular engineering and member of the Institute for Genomic Biology at Illinois.

Zhao’s team, using yeast and mammalian cells, altered the specificity of human estrogen receptor alpha by 100 million times so it would bind preferentially to a non-toxic synthetic molecule (4,4’-dihydroxybenzil) over the natural estrogen 17-beta-estradiol.


Such selectivity moves researchers closer to designing synthetic molecules that will attach to only targeted receptors to activate or deactivate desired gene expression in living systems, which could lead to advances in such applications as gene therapy, metabolic engineering, functional genomics, enzyme engineering and animal disease model studies.

Many previous attempts, using a variety of molecular methods, have involved time-consuming approaches that have resulted in unintended activity when non-targeted receptors have responded to the new molecules.

"I’m not saying that we have solved the problem, but we have shown that our approach can be very efficient and done successfully," said Zhao, also an affiliate in the chemistry and bioengineering departments and member of the Center for Biophysics and Computational Biology. "We were able to alter the ligand (molecule) selectively by 10 to the 8th in mammalian cells. No one has had this high level of success."

The Illinois approach, Zhao said, is more general, quicker to accomplish and more accurate than a scientifically hailed combinational approach published in PNAS last October by researchers at the Georgia Institute of Technology. In their paper, the Georgia scientists used random mutagenesis and chemical complementation to develop a yeast-based system that made a retinoid X receptor, a nuclear hormone receptor, recognize and bind to a synthetic molecule.

The protein-engineering approach used by Zhao’s team used directed evolution, which mimics natural evolution in a test tube, to force rapid evolution of human estrogen receptor with new ligand specificity. This process is done mainly through stepwise, site-saturation mutagenesis and high throughput screening.

The sites of human estrogen receptor chosen for saturation mutagenesis were identified through rational design, which involves computational modeling and biochemical and genetic studies to predict the interactions between the receptor and the ligand and the myriad molecular interactions that take place to drive gene expression. The engineered genetic changes subsequently make the receptor highly sensitive to the synthetic molecule that is introduced.

"We envision that the described technology could provide a powerful, broadly applicable tool for engineering receptors/enzymes with improved or novel ligand/substrate specificity," Zhao said.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>