Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers improve design of genetic on-off switches

08.04.2005


Researchers at the University of Illinois at Urbana-Champaign have set a new standard in the design and engineering of nuclear hormone receptor-based genetic on-off switches, without causing new problems or aggravating existing ones.



The new technique, published online ahead of regular publication by the Proceedings of the National Academy of Sciences, combines the advantages of directed evolution and computationally driven rational design, said Huimin Zhao, a professor in the department of chemical and biomolecular engineering and member of the Institute for Genomic Biology at Illinois.

Zhao’s team, using yeast and mammalian cells, altered the specificity of human estrogen receptor alpha by 100 million times so it would bind preferentially to a non-toxic synthetic molecule (4,4’-dihydroxybenzil) over the natural estrogen 17-beta-estradiol.


Such selectivity moves researchers closer to designing synthetic molecules that will attach to only targeted receptors to activate or deactivate desired gene expression in living systems, which could lead to advances in such applications as gene therapy, metabolic engineering, functional genomics, enzyme engineering and animal disease model studies.

Many previous attempts, using a variety of molecular methods, have involved time-consuming approaches that have resulted in unintended activity when non-targeted receptors have responded to the new molecules.

"I’m not saying that we have solved the problem, but we have shown that our approach can be very efficient and done successfully," said Zhao, also an affiliate in the chemistry and bioengineering departments and member of the Center for Biophysics and Computational Biology. "We were able to alter the ligand (molecule) selectively by 10 to the 8th in mammalian cells. No one has had this high level of success."

The Illinois approach, Zhao said, is more general, quicker to accomplish and more accurate than a scientifically hailed combinational approach published in PNAS last October by researchers at the Georgia Institute of Technology. In their paper, the Georgia scientists used random mutagenesis and chemical complementation to develop a yeast-based system that made a retinoid X receptor, a nuclear hormone receptor, recognize and bind to a synthetic molecule.

The protein-engineering approach used by Zhao’s team used directed evolution, which mimics natural evolution in a test tube, to force rapid evolution of human estrogen receptor with new ligand specificity. This process is done mainly through stepwise, site-saturation mutagenesis and high throughput screening.

The sites of human estrogen receptor chosen for saturation mutagenesis were identified through rational design, which involves computational modeling and biochemical and genetic studies to predict the interactions between the receptor and the ligand and the myriad molecular interactions that take place to drive gene expression. The engineered genetic changes subsequently make the receptor highly sensitive to the synthetic molecule that is introduced.

"We envision that the described technology could provide a powerful, broadly applicable tool for engineering receptors/enzymes with improved or novel ligand/substrate specificity," Zhao said.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>