Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unmask malaria parasite’s cloaking mechanism

08.04.2005


Scientists are making strides in understanding how the malaria parasite Plasmodium falciparum disguises itself to avoid detection by the immune system. The findings could lead to the development of new drugs for a disease that causes more than 300 million acute illnesses and at least one million deaths each year, most of them in developing countries.

Individuals infected with malaria cannot develop an effective immune response because the parasite that causes the disease is a master of disguise. Throughout its lifetime, P. falciparum continually changes the version of a protein known as PfEMP1 that it deposits on the surface of infected cells. By the time the immune system learns to recognize the protein and starts making antibodies against it, the parasite has switched to another form of the protein, and the game of hide and seek starts over.

In a new study, scientists led by Alan Cowman and Brendan Crabb, Howard Hughes Medical Institute (HHMI) international research scholars at The Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia, set out to test the hypothesis that P. falciparum uses gene silencing to mask its presence. Their findings are published in the April 8, 2005, issue of the journal Cell. The study also involved researchers from Monash University in Clayton, Australia, the University of Melbourne, and the Institut Pasteur in Paris.



Since the mid-1990s, researchers have known that a family of genes known as var encode PfEMP1. While the parasite’s genome contains at least 50 var genes, only one is expressed at any given time, giving rise to a single version of the PfEMP1 protein. Over the course of an infection, expression switches from one var gene to another – a phenomenon that until now, scientists have not understood.

The researchers say that teasing out the mechanism by which the var genes are switched on or off could lead to the development of novel drugs for malaria. "If you could work out a way of causing the parasite to switch all the var genes on, then the body would see all the variations of var genes, and the immune system would be able to control the infection," said Cowman.

To assess whether a region of DNA containing a particular var gene was active or silent, the scientists measured expression of a gene that they artificially inserted adjacent to var in a population of parasites. The introduced gene encoded resistance to a drug. When the researchers exposed the parasites to that drug, they found that gene silencing was indeed at work. In some parasites, the DNA region was active, and the parasites showed resistance to the drug. In other parasites, the region was not being transcribed, and the drug successfully blocked the biochemical reaction it is meant to block.

After examining the regions around the silent and active var genes, the researchers found differences in the way that the DNA was packaged--some of the DNA was wrapped so tightly with proteins that it ceased to be accessible for transcription. This finding implicated a protein called silent information regulator 2 (SIR2), which is already known to play a role in gene silencing in yeast by modifying gene packaging.

To examine the potential role of SIR2 in silencing var genes, the scientists created a parasite that lacked a functioning gene for that protein. They found that the genetically-altered parasite expressed a greater number of var genes than parasites with normal SIR2. "Silencing occurs by packaging up the DNA into a tight form and preventing it from being expressed. That tight packaging involves SIR2," said Cowman. "The question then was how one of those genes is switched back on."

The researchers knew that, in some organisms, gene regulation is dictated not only by DNA sequence and the way that sequence is folded, but also by physical location. In these cases, the expression of genes located at the edge of the nucleus involves the movement of a gene into certain accessible compartments. They wondered if nuclear compartments came into play in var gene activation.

Using a technique called fluorescent in situ hybridization (FISH), which employs fluorescent-labeled probes specific for particular segments of DNA, the investigators gauged the position of var genes in on and off states and found that their hunch was correct. "There does indeed appear to be discrete nuclear compartments that allow gene expression to occur," said Crabb. "Every now and again, one of the genes moves into the right spot and gets activated."

Because some var genes are located near each other, Cowman said, sometimes more than one var gene is moved into a compartment at the same time. Since this does not result in the simultaneous expression of multiple var genes, it suggests that there are other tiers of regulation that must be uncovered before scientists can hope to create new drugs.

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>