Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote control flies?: Fly behavior controlled by laser light

08.04.2005


Yale University School of Medicine researchers have found a way to exercise a little mind control over fruit flies, making the flies jump, beat their wings, and fly on command by triggering genetic "remote controls" that the scientists designed and installed in the insects’ central nervous systems, according to a new report in the 8 April issue of the journal Cell.

Susana Lima and Gero Miesenböck hope that the remote control system will provide a valuable way to study how nerve-cell activity and connections are related to specific behaviors, from simple movements to more complex behaviors like learning, aggression, and even abstract thought.

The ability to control specific groups of neurons without implanting electrodes in the brain or using similarly invasive techniques "would represent a significant step in moving neuroscience from passive observation…to active and predictive manipulation of behavior," the Cell authors write. Miesenböck also says "one could use this method to restore neural signals that have been lost" due to injury or disease, such as in spinal cord trauma, although he notes that the possibility is "far-fetched" at the moment.



The remote control is based on the idea that specific nerve cells could be equipped with molecular "receivers" that allow them to recognize an outside signal like a laser light pulse and translate that signal into the electrical signals characteristic of nerve-cell activity.

To accomplish this, Miesenböck and Lima devised a triggered molecular lock and key system, where the "lock" was the receiver genetically encoded to be expressed in the target neurons, the "key" was the molecule that would bind to and activate the lock, and laser light was the trigger that brought the key to the lock.

For the lock, the researchers used an ion channel, or a pore-forming protein that allows charged particles to pass through a cell membrane. The small molecule ATP activates the ion channel chosen by the researchers, so ATP became the key. To keep the ATP from binding to the ion channel and jump-starting the nerve cell’s activity before the proper moment, Lima and Miesenböck caged the ATP with other chemical compounds that could be removed by the laser light. Miesenböck says one of the most difficult parts of the experiment was deciding which particular nerve cells to target with the remote control system. "To ascertain that the system actually worked, it wasn’t clear how we could measure activation in the neurons in moving, freely behaving organisms," he explains.

The breakthrough, he says, came when they decided to target a small set of nerve cells in the fly called the giant fiber system. The giant fiber system controls very specific, stereotypical movements such as escape movements, jumping, and the beginnings of flight. If the flies engaged in these behaviors after the giant fiber neurons had been outfitted and "operated" with the remote control, Miesenböck and Lima reasoned, they could be sure that their system was working.

After genetically engineering the flies to express the ion channel in the giant fiber system cells and using the tiniest of injections to place the caged ATP inside the flies, the researchers shone a ultraviolet-wavelength laser in brief, millisecond pulses at the flies trapped inside a glass-domed arena. On command, the flies began a series of escape movements--extending their legs, jumping, and opening and rapidly flapping their wings.

The laser-triggered remote controls in the giant fiber system worked about 63 percent of the time, while remote controls placed in other nerve cells that were targets of the giant fiber system worked 82 percent of the time, the researchers concluded. Lima and Misenböck also equipped another set of nerve cells called dopaminergic neurons with the remote controls, boosting the flies’ activity levels and changing their flight paths.

Misenböck says the triggered behaviors can last seconds or continue for minutes, depending on whether the neural circuit activated by the remote control has feedback loops that keep the circuit. "In the case of the flight circuits," he says, "it is like pushing a swing. One initial kick and it keeps swinging back and forth for a while."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>