Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote control flies?: Fly behavior controlled by laser light

08.04.2005


Yale University School of Medicine researchers have found a way to exercise a little mind control over fruit flies, making the flies jump, beat their wings, and fly on command by triggering genetic "remote controls" that the scientists designed and installed in the insects’ central nervous systems, according to a new report in the 8 April issue of the journal Cell.

Susana Lima and Gero Miesenböck hope that the remote control system will provide a valuable way to study how nerve-cell activity and connections are related to specific behaviors, from simple movements to more complex behaviors like learning, aggression, and even abstract thought.

The ability to control specific groups of neurons without implanting electrodes in the brain or using similarly invasive techniques "would represent a significant step in moving neuroscience from passive observation…to active and predictive manipulation of behavior," the Cell authors write. Miesenböck also says "one could use this method to restore neural signals that have been lost" due to injury or disease, such as in spinal cord trauma, although he notes that the possibility is "far-fetched" at the moment.



The remote control is based on the idea that specific nerve cells could be equipped with molecular "receivers" that allow them to recognize an outside signal like a laser light pulse and translate that signal into the electrical signals characteristic of nerve-cell activity.

To accomplish this, Miesenböck and Lima devised a triggered molecular lock and key system, where the "lock" was the receiver genetically encoded to be expressed in the target neurons, the "key" was the molecule that would bind to and activate the lock, and laser light was the trigger that brought the key to the lock.

For the lock, the researchers used an ion channel, or a pore-forming protein that allows charged particles to pass through a cell membrane. The small molecule ATP activates the ion channel chosen by the researchers, so ATP became the key. To keep the ATP from binding to the ion channel and jump-starting the nerve cell’s activity before the proper moment, Lima and Miesenböck caged the ATP with other chemical compounds that could be removed by the laser light. Miesenböck says one of the most difficult parts of the experiment was deciding which particular nerve cells to target with the remote control system. "To ascertain that the system actually worked, it wasn’t clear how we could measure activation in the neurons in moving, freely behaving organisms," he explains.

The breakthrough, he says, came when they decided to target a small set of nerve cells in the fly called the giant fiber system. The giant fiber system controls very specific, stereotypical movements such as escape movements, jumping, and the beginnings of flight. If the flies engaged in these behaviors after the giant fiber neurons had been outfitted and "operated" with the remote control, Miesenböck and Lima reasoned, they could be sure that their system was working.

After genetically engineering the flies to express the ion channel in the giant fiber system cells and using the tiniest of injections to place the caged ATP inside the flies, the researchers shone a ultraviolet-wavelength laser in brief, millisecond pulses at the flies trapped inside a glass-domed arena. On command, the flies began a series of escape movements--extending their legs, jumping, and opening and rapidly flapping their wings.

The laser-triggered remote controls in the giant fiber system worked about 63 percent of the time, while remote controls placed in other nerve cells that were targets of the giant fiber system worked 82 percent of the time, the researchers concluded. Lima and Misenböck also equipped another set of nerve cells called dopaminergic neurons with the remote controls, boosting the flies’ activity levels and changing their flight paths.

Misenböck says the triggered behaviors can last seconds or continue for minutes, depending on whether the neural circuit activated by the remote control has feedback loops that keep the circuit. "In the case of the flight circuits," he says, "it is like pushing a swing. One initial kick and it keeps swinging back and forth for a while."

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>