Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensory deprivation reduces new cell size in the olfactory system

07.04.2005


Sensory deprivation causes changes in new cell size and excitability in the olfactory system, which governs the ability to smell, according to a study in Neuron by a Yale School of Medicine researcher.



"This gives new insight into how stem cells in the olfactory system may be used to restore function in a brain that has been compromised by degenerative disease or trauma," said Gordon Shepherd, M.D., co-author of the paper and professor of neuroscience at Yale.

Shepherd, on sabbatical with Pierre-Marie Lledo of the Pasteur Institute, investigated how the olfactory system responds to changes brought about by injury or different levels of activity. They closed one nostril in mice, a common sensory deprivation procedure, and then observed how the olfactory system adjusted to the change in sensory input.


The olfactory system is one of the most plastic regions of the brain, with nerve cells that are continually replenished by stem cells. Stem cells in the nose replenish the sensory cells, which send the odor messages to the olfactory bulb. "There also are stem cells deep in the brain that replenish the interneurons, which carry out much of the processing of the odor messages that takes place in the olfactory bulb," Shepherd said.

When deprived of sensory input, there was a reduction in the size of the new interneurons, but this was compensated by an increase in their excitability. Shepherd and colleague Michele Migliore, visiting scientist from Palermo, Sicily, carried out simulations which showed how these two changes balance each other. "This preserves the function of the interneurons in being able to process input if it were to be restored," Shepherd said.

In another recent study, Shepherd and Migliore extended their model to show how processing takes place within the olfactory networks. The new data on plasticity will be incorporated into the new model.

In addition to Shepherd and Migliore, co-authors included Armen Saghatelyan, Pascal Roux, Christelle Rochefort, David Desmaisons and Pierre Charneau of the Pasteur Institute.

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>