Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation in clams protects against paralytic shellfish poisoning but raises human health risk

07.04.2005


Just like people, clams can be affected by the toxins that cause paralytic shellfish poisoning (PSP), but scientists have now identified a mutation in clams that gives some protection. PSP toxins interfere with nerve function, and the mutation, which changes a single amino acid in a sodium channel, makes nerves less sensitive to those toxins.

The discovery is reported in the April 7 issue of the journal Nature. The authors suggest that it has wide ranging implications for the evolution of shellfish in the presence of toxic algae and increases the risk of PSP to people who eat clams by enabling contaminated clams to survive in the presence of toxins.

The report, "Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP," was written by a team of scientists, including Laurie Connell of the University of Maine School of Marine Sciences. It describes differences in the responses of two soft shell clam populations -- one in the Bay of Fundy and the other in the Lawrencetown estuary in Nova Scotia -- to saxitoxin as well as tetrodotoxin, a powerful toxin derived from the puffer fish.



The lead author is V. Monica Bricelj of the Institute for Marine Biosciences in Halifax, Nova Scotia, and in addition to Connell, co-authors are Keiichi Konoki, Todd Scheuer, and William A. Catterall of the University of Washington; Scott P. MacQuarrie of the Institute for Marine Biosciences; and Vera L. Trainer of the National Oceanic and Atmospheric Administration in Seattle.

"Since the 1960s, it’s been known that different species of shellfish have different resistance to PSP toxins," says Connell. "This is the first time the source of that resistance has been shown. We now have a marker that can be used to determine if clams have this mutation. It’s easy to use and could help reduce the time of clam flat closures (related to red tide)."

Betty Twarog, a neurophysiologist who works at UMaine’s Darling Marine Center in Walpole, Maine, did research in the 1960s and 1970s showing that PSP toxin resistance varies among shellfish species.

In laboratory studies, the investigators exposed clams to PSP toxins and monitored the shellfish for mortality and potentially harmful changes in burrowing behavior. They found that clams that came from areas with a history of red tides had less sensitivity to the toxins than did clams from an area with no such history. They showed that nerves taken from the two clam populations also function differently, with those from exposed the population showing markedly less sensitivity to the toxins.

Tracking these differences down to the genomic level and comparing DNA sequences from the two populations enabled Connell to identify the single nucleotide mutation that corresponded with toxin resistance. She showed that the mutation changed an amino acid in a channel, a protein in the nerve cell membrane that allows sodium ions to pass through the membrane. Regulation of sodium is critical to nerve cell function. Without the mutation, the PSP toxins can bind to the sodium channel, shutting down the nerve and leading to paralysis.

The toxin acts like a cork in a bottle, preventing sodium ions from flowing through the membrane, says Connell. The mutation prevents the cork from sticking.

"This is a very conservative mutation in the protein. It was thought that the sodium channel was flexible at this location. We’ve shown that it is not, that it is rigid," says Connell. That could have implications for medical research, she notes, leading to new drugs for treatment of neuromuscular disease.

Because clams that possess the mutation are more likely to survive in red tide contaminated areas, the toxin and the mutation act together to influence the shellfish population, the authors conclude.

Laurie Connell | EurekAlert!
Further information:
http://www.maine.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>