Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At the molecular level, the predator is the prey

07.04.2005


An evolutionary arms race between predatory garter snakes and their newt quarry is turning out to be something of an illusion. At the molecular level, another battle rages. And in this second, miniature realm, it’s the newt who’s the aggressor.


Some garter snakes (Thamnophis sirtalis) have evolved the ability to eat super-toxic newts (Taricha granulosa) in the Pacific Northwest Photo by: Edmund Brodie III



Biologists at Indiana University Bloomington, Utah State University and the University of Utah present evidence in this week’s Nature that a toxin produced by the rough skinned newt, Taricha granulosa, has forced several evolutionary changes in the garter snake Thamnophis sirtalis or, more specifically, in the snake nerve cell protein that endures the toxin’s attacks.

Embedded in the surface of garter snake nerve cells is tsNa(V)1.4, a tube-shaped protein that allows sodium ions to flow into the cell. When nerve cells’ ability to move sodium in and out is hampered, paralysis and death can result. Tetrodotoxin (TTX), a powerful paralytic poison concentrated in the newts’ skin, can bind to garter snake nerve cell channels and prevent sodium ions from flowing freely.


"These channels are absolutely fundamental to every aspect of nerve and muscle function and are highly specific gateways for sodium ions," said IUB biologist Edmund Brodie III, one of the paper’s coauthors. "If the channels change too much or in the wrong way, they can’t perform their basic, everyday functions. Sodium channel genes in different vertebrates are virtually identical to each other, but not in these snakes. We’re finding a molecular arms race is driving rapid and repeated changes in the gene within this group of beasts."

For TTX to bind successfully to the sodium channel, the toxin needs something to bind to. At this moment in the garter snake’s evolutionary history, TTX infiltrates a hole on tsNa(V)1.4’s surface, binding to an aromatic amino acid and causing enough of a change in the sodium channel’s shape to impair its function. Three of the four Pacific Northwest snake populations the scientists examined have evolved some degree of resistance to TTX by making this aromatic amino acid harder for TTX to grasp -- or by removing it altogether.

One-thirtieth of the TTX normally found in a T. granulosa newt is enough to kill the average human being. The only organisms on Earth that can eat T. granulosa newts and survive are some T. sirtalis garter snakes. TTX is a defensive compound found in some puffer fish, octopuses and primitive chordates. It is used in low concentrations to treat morphine and heroine addicts. It’s also the "zombie" drug used by Haitian voodoo ritualists.

Despite its action at the molecular level, the evolution of TTX in some organisms is viewed by ecologists as a defense mechanism. In the case of T. granulosa newts and T. sirtalis garter snakes, the interaction has gone far beyond that simple fangs-off arrangement, evolving into a lethal contest of toxification/detoxification one-upsmanship.

"One might think that this sort of change in the sodium channel would be too costly to the snakes," said Utah State University biologist Shana Geffeney, who conducted the gene expression experiments. "What will be interesting in the future is to understand if there is a balance between the costs of the changes in the channel pore structure on channel function and the benefits of changes in TTX binding."

The evolution of new traits often happens one of two ways, either by altering existing genes or by changing patterns and amounts of expression. The current Nature report shows that snakes’ ability to detoxify TTX involves changes in the sodium channel gene.

"That is generally the story as it is developing," Brodie said. "Ecological arms races that go on between predator and prey are really driven at the molecular level. We have no evidence, nor reason to believe, that TTX is changing too, but rather that the toxin responds in quantity. Pour on more toxin, change the snake’s sodium channel. Add more toxin, force further changes in the channel."

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>