Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing could bolster radiotherapy’s effectiveness against cancer

06.04.2005


Obtaining a genetic picture of how a tumor will react to the many treatment techniques available could help doctors prescribe therapies customized for individual cancer patients’ needs, suggests a Purdue University research team.



A group of scientists including Jian-Jian "J.J." Li has found a trio of proteins often present in cancer cells that protect the tumor from destruction by radiotherapy. Because no single protein in the group is responsible for keeping the cancer alive, Li said that the key to a successful assault could rest in a deeper understanding of the relationship among these protein molecules – an understanding that could be made available through genetic testing.

"We have discovered that breast cancer cells defend themselves on the molecular level against radiation, and this response could be reducing the effectiveness of modern medicine’s fight against cancer," said Li, who is an associate professor of health sciences in Purdue’s School of Health Sciences. "Because these three proteins interact in ways peculiar to each tumor, it might help doctors to first obtain the ’genetic fingerprint’ of cancerous tissue in order to find out which treatment method will be most effective."


The research appears in this week’s issue of the Journal of Biochemistry. Li’s co-authors include researchers from the City of Hope National Medical Center, Bio-Rad Laboratories and the National Institutes of Health.

All living cells are kept alive through the efforts of thousands of different proteins, each of which may have many different and interrelated functions. Proteins are brought into action, or "expressed," by genes in the cell’s DNA when certain needs arise – such as reproduction or metabolizing energy. Three such proteins found in most human cells have been the focus of Li’s research for several years, each of which is commonly known to scientists by a technical name: ERK, NF-kappa B and GADD45 beta. "In healthy cells, these three proteins all play a role in building new cellular structures, allowing the body to grow and regenerate," Li said. "Each has individual functions that are well known. NF-kappa B and ERK, for example, work as construction managers that tell the genes where more building blocks are needed and how they should be arranged, while GADD45 beta helps repair damage to DNA. This helps keep a cell from mutating as it grows."

NF-kappa B beta is known to be present in abnormally high amounts in tumors. However, scientists also have noticed that after the NF-kappa B has been inhibited, the cancer cells are less responsive to radiotherapy. Apparently, Li said, the presence of the protein keeps tumor cells alive despite receiving a punishing amount of radiation that ordinarily would kill them. "Previous research has also implicated NF-kappa B in this type of radioresistance to cancer," Li said. "No one really knew what was happening. But the issue needed resolution because, once again, we were confronting the standard dilemma in cancer treatment: How do you destroy the cancer without damaging the surrounding healthy cells?"

Li’s group found that it was not just one of these proteins that was fighting hard to save the cells – it was all three. After subjecting breast cancer cells in the lab to the stress of ionizing radiation, the group found that the proteins all are co-activated in a pattern of mutual dependence, coordinating among themselves to increase cell survival rate. "The essence of our discovery can expressed rather simply," Li said. "Genes in the body do not operate in isolation, but as a team. This is the sort of lesson we will probably learn again and again as the recently decoded human genome reveals more of its secrets."

Indeed, it could be in the genome that a solution to the dilemma will be found, Li said. "If we can test cancer cells not for just three proteins but for thousands, the ’genetic fingerprint’ such a test would provide might help us to devise better therapies to kill tumors," he said. "Knowing in general that proteins A, B and C are defending the cell may allow us to administer drugs that block them, which could allow us to irradiate the now-defenseless cancer with lower radiation levels. This would be simultaneously more effective against the cancer and less harmful to the patient in general."

In the case of breast cancer cells, the proteins in question are ERK, NF-kappa B and GADD45 beta. But Li said that this was probably the first of many discoveries that relate proteins to one another in such a fashion. "These three proteins are most likely the tip of the iceberg," Li said. "This discovery is all about interaction, which goes beyond any one protein or gene expression. People used to think NF-kappa B was just a gene regulator. Now we realize it could be part of a signaling network that decides the pattern of gene expression – a pattern that remains mysterious."

This research was funded in part by the National Institutes of Health’s National Cancer Institute and the Department of Energy.

Li is associated with the Purdue Cancer Center. One of just eight National Cancer Institute-designated basic-research facilities in the United States, the center attempts to help cancer patients by identifying new molecular targets and designing future agents and drugs for effectively detecting and treating cancer.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Jian-Jian Li, jjli@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>