Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing could bolster radiotherapy’s effectiveness against cancer

06.04.2005


Obtaining a genetic picture of how a tumor will react to the many treatment techniques available could help doctors prescribe therapies customized for individual cancer patients’ needs, suggests a Purdue University research team.



A group of scientists including Jian-Jian "J.J." Li has found a trio of proteins often present in cancer cells that protect the tumor from destruction by radiotherapy. Because no single protein in the group is responsible for keeping the cancer alive, Li said that the key to a successful assault could rest in a deeper understanding of the relationship among these protein molecules – an understanding that could be made available through genetic testing.

"We have discovered that breast cancer cells defend themselves on the molecular level against radiation, and this response could be reducing the effectiveness of modern medicine’s fight against cancer," said Li, who is an associate professor of health sciences in Purdue’s School of Health Sciences. "Because these three proteins interact in ways peculiar to each tumor, it might help doctors to first obtain the ’genetic fingerprint’ of cancerous tissue in order to find out which treatment method will be most effective."


The research appears in this week’s issue of the Journal of Biochemistry. Li’s co-authors include researchers from the City of Hope National Medical Center, Bio-Rad Laboratories and the National Institutes of Health.

All living cells are kept alive through the efforts of thousands of different proteins, each of which may have many different and interrelated functions. Proteins are brought into action, or "expressed," by genes in the cell’s DNA when certain needs arise – such as reproduction or metabolizing energy. Three such proteins found in most human cells have been the focus of Li’s research for several years, each of which is commonly known to scientists by a technical name: ERK, NF-kappa B and GADD45 beta. "In healthy cells, these three proteins all play a role in building new cellular structures, allowing the body to grow and regenerate," Li said. "Each has individual functions that are well known. NF-kappa B and ERK, for example, work as construction managers that tell the genes where more building blocks are needed and how they should be arranged, while GADD45 beta helps repair damage to DNA. This helps keep a cell from mutating as it grows."

NF-kappa B beta is known to be present in abnormally high amounts in tumors. However, scientists also have noticed that after the NF-kappa B has been inhibited, the cancer cells are less responsive to radiotherapy. Apparently, Li said, the presence of the protein keeps tumor cells alive despite receiving a punishing amount of radiation that ordinarily would kill them. "Previous research has also implicated NF-kappa B in this type of radioresistance to cancer," Li said. "No one really knew what was happening. But the issue needed resolution because, once again, we were confronting the standard dilemma in cancer treatment: How do you destroy the cancer without damaging the surrounding healthy cells?"

Li’s group found that it was not just one of these proteins that was fighting hard to save the cells – it was all three. After subjecting breast cancer cells in the lab to the stress of ionizing radiation, the group found that the proteins all are co-activated in a pattern of mutual dependence, coordinating among themselves to increase cell survival rate. "The essence of our discovery can expressed rather simply," Li said. "Genes in the body do not operate in isolation, but as a team. This is the sort of lesson we will probably learn again and again as the recently decoded human genome reveals more of its secrets."

Indeed, it could be in the genome that a solution to the dilemma will be found, Li said. "If we can test cancer cells not for just three proteins but for thousands, the ’genetic fingerprint’ such a test would provide might help us to devise better therapies to kill tumors," he said. "Knowing in general that proteins A, B and C are defending the cell may allow us to administer drugs that block them, which could allow us to irradiate the now-defenseless cancer with lower radiation levels. This would be simultaneously more effective against the cancer and less harmful to the patient in general."

In the case of breast cancer cells, the proteins in question are ERK, NF-kappa B and GADD45 beta. But Li said that this was probably the first of many discoveries that relate proteins to one another in such a fashion. "These three proteins are most likely the tip of the iceberg," Li said. "This discovery is all about interaction, which goes beyond any one protein or gene expression. People used to think NF-kappa B was just a gene regulator. Now we realize it could be part of a signaling network that decides the pattern of gene expression – a pattern that remains mysterious."

This research was funded in part by the National Institutes of Health’s National Cancer Institute and the Department of Energy.

Li is associated with the Purdue Cancer Center. One of just eight National Cancer Institute-designated basic-research facilities in the United States, the center attempts to help cancer patients by identifying new molecular targets and designing future agents and drugs for effectively detecting and treating cancer.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Jian-Jian Li, jjli@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>