Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing could bolster radiotherapy’s effectiveness against cancer

06.04.2005


Obtaining a genetic picture of how a tumor will react to the many treatment techniques available could help doctors prescribe therapies customized for individual cancer patients’ needs, suggests a Purdue University research team.



A group of scientists including Jian-Jian "J.J." Li has found a trio of proteins often present in cancer cells that protect the tumor from destruction by radiotherapy. Because no single protein in the group is responsible for keeping the cancer alive, Li said that the key to a successful assault could rest in a deeper understanding of the relationship among these protein molecules – an understanding that could be made available through genetic testing.

"We have discovered that breast cancer cells defend themselves on the molecular level against radiation, and this response could be reducing the effectiveness of modern medicine’s fight against cancer," said Li, who is an associate professor of health sciences in Purdue’s School of Health Sciences. "Because these three proteins interact in ways peculiar to each tumor, it might help doctors to first obtain the ’genetic fingerprint’ of cancerous tissue in order to find out which treatment method will be most effective."


The research appears in this week’s issue of the Journal of Biochemistry. Li’s co-authors include researchers from the City of Hope National Medical Center, Bio-Rad Laboratories and the National Institutes of Health.

All living cells are kept alive through the efforts of thousands of different proteins, each of which may have many different and interrelated functions. Proteins are brought into action, or "expressed," by genes in the cell’s DNA when certain needs arise – such as reproduction or metabolizing energy. Three such proteins found in most human cells have been the focus of Li’s research for several years, each of which is commonly known to scientists by a technical name: ERK, NF-kappa B and GADD45 beta. "In healthy cells, these three proteins all play a role in building new cellular structures, allowing the body to grow and regenerate," Li said. "Each has individual functions that are well known. NF-kappa B and ERK, for example, work as construction managers that tell the genes where more building blocks are needed and how they should be arranged, while GADD45 beta helps repair damage to DNA. This helps keep a cell from mutating as it grows."

NF-kappa B beta is known to be present in abnormally high amounts in tumors. However, scientists also have noticed that after the NF-kappa B has been inhibited, the cancer cells are less responsive to radiotherapy. Apparently, Li said, the presence of the protein keeps tumor cells alive despite receiving a punishing amount of radiation that ordinarily would kill them. "Previous research has also implicated NF-kappa B in this type of radioresistance to cancer," Li said. "No one really knew what was happening. But the issue needed resolution because, once again, we were confronting the standard dilemma in cancer treatment: How do you destroy the cancer without damaging the surrounding healthy cells?"

Li’s group found that it was not just one of these proteins that was fighting hard to save the cells – it was all three. After subjecting breast cancer cells in the lab to the stress of ionizing radiation, the group found that the proteins all are co-activated in a pattern of mutual dependence, coordinating among themselves to increase cell survival rate. "The essence of our discovery can expressed rather simply," Li said. "Genes in the body do not operate in isolation, but as a team. This is the sort of lesson we will probably learn again and again as the recently decoded human genome reveals more of its secrets."

Indeed, it could be in the genome that a solution to the dilemma will be found, Li said. "If we can test cancer cells not for just three proteins but for thousands, the ’genetic fingerprint’ such a test would provide might help us to devise better therapies to kill tumors," he said. "Knowing in general that proteins A, B and C are defending the cell may allow us to administer drugs that block them, which could allow us to irradiate the now-defenseless cancer with lower radiation levels. This would be simultaneously more effective against the cancer and less harmful to the patient in general."

In the case of breast cancer cells, the proteins in question are ERK, NF-kappa B and GADD45 beta. But Li said that this was probably the first of many discoveries that relate proteins to one another in such a fashion. "These three proteins are most likely the tip of the iceberg," Li said. "This discovery is all about interaction, which goes beyond any one protein or gene expression. People used to think NF-kappa B was just a gene regulator. Now we realize it could be part of a signaling network that decides the pattern of gene expression – a pattern that remains mysterious."

This research was funded in part by the National Institutes of Health’s National Cancer Institute and the Department of Energy.

Li is associated with the Purdue Cancer Center. One of just eight National Cancer Institute-designated basic-research facilities in the United States, the center attempts to help cancer patients by identifying new molecular targets and designing future agents and drugs for effectively detecting and treating cancer.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Jian-Jian Li, jjli@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>