Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key regulator of bone cells linked to osteoporosis

06.04.2005


Scientists at the Yale School of Medicine identified a molecule in osteoclasts, IRAK-M, that is a key regulator of the loss of bone mass.



Osteoclasts are cells that play a major role in the development and remodeling of bone. They originate from the fusion of macrophages and are important mediators of the loss of bone mass that leads to osteoporosis

Osteoporosis is a serious problem worldwide: it is characterized by loss of bone density leading to fractures in response to relatively mild trauma. Other disorders of localized bone loss include rheumatoid arthritis and periodontal disease.


The research on osteoporosis, led by Associate Professor Agnès Vignery in the Department of Orthopedics and Rehabilitation, focused on IRAK-M (interleukin-1 receptor associated kinase M), an intracellular signaling molecule previously found only in macrophages and in circulating white blood cells. Their theory was that if IRAK-M is maintained as macrophages fuse to form osteoclasts, it would block later steps in the signal pathway and keep osteoclasts from growing out of control.

"IRAK-M appears to be a key signaling molecule in the prevention of bone loss," said Vignery. "In normal mice the level of IRAK-M in osteoclasts is high compared to what is found in macrophages -- and bones are well maintained. Mice that lack IRAK-M develop severe osteoporosis."

The study was done with male mice, and possible association between sex hormones and the expression of IRAK-M remain to be investigated, according to Vignery. "For now, IRAK-M looks like an exciting new target for treating or preventing the devastation of osteoporosis and other localized problems of bone loss,"

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>