Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers test new therapy for advanced melanoma

06.04.2005


Melanoma is a particularly deadly form of skin cancer very resistant to treatment. Researchers at H. Lee Moffitt Cancer Center & Research Institute and the University of South Florida are testing a promising new therapy that prompts the immune system to aid in the fight against melanoma tumors.



"This is a milestone clinical trial because it is the first time that electroporation is being used to deliver plasmid DNA in a gene therapy study in humans," said Richard Heller, PhD, USF professor of medical microbiology and immunology who helped develop the technology used in the study.

Electroporation is a technique in which a hand-held device applied to the skin delivers pulses of electricity to open up pores in the tumor cell membrane. This opening allows a small therapeutic molecule -- in this case a molecule known as a DNA plasmid that contains the gene for Interleukin-12 -- to slip inside the melanoma tumor before the membrane reseals.


"Melanoma does not respond well to standard chemotherapy," said Adil Daud, MD, assistant professor of oncology in the Cutaneous Oncology Program at Moffitt. "Gene therapy gives us the flexibility to introduce a huge variety of potential targets for treatment, but its major limitation has been getting the gene into the cancer. If electroporation can deliver the gene to these tumors reliably and without serious side effects, melanoma and other cancers would be open to many new treatment possibilities."

Six years of laboratory studies by Dr. Heller and his colleagues preceded the initial human trial begun earlier this year at Moffitt. The collaboration of USF and Moffitt in this trial is a good example of translational research -- moving the new application of a gene transfer technology from an animal model to the patient. Dr. Heller’s team worked extensively with Dr. Daud to adapt the electroporation technique used on mice to humans.

The researchers injected the DNA plasmid, which encodes a gene that stimulates the immune system, directly into the tumor site in mice. Then, they applied electroporation to the site to help the plasmid move into the tumor cells. The tumor cells used the plasmid’s genetic instructions to make proteins. These proteins signaled the immune system to recognize the melanoma tumors as abnormal and attack.

Eighty percent of the mice were cured with this therapy -- their tumors disappeared and the treated animals remained disease free for the full length of the study (100 days), Dr. Heller said.

Furthermore, he said, even when melanoma cells were reinjected into the cured mice the tumors were rejected. This indicates the immune system formed a memory response that recognized the melanoma cells as foreign and prevented tumor regrowth.

"We were very encouraged by the results of the preclinical studies." Dr. Heller said. "We’re hoping this translates into a beneficial treatment for patients."

The Phase 1 clinical trial by Moffitt and Genetronics Biomedical Corp is evaluating the safety of the electroporation technology in treating patients with advanced melanoma. The trial expects to enroll 18 to 25 patients.

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.hsc.usf.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>