Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers test new therapy for advanced melanoma

06.04.2005


Melanoma is a particularly deadly form of skin cancer very resistant to treatment. Researchers at H. Lee Moffitt Cancer Center & Research Institute and the University of South Florida are testing a promising new therapy that prompts the immune system to aid in the fight against melanoma tumors.



"This is a milestone clinical trial because it is the first time that electroporation is being used to deliver plasmid DNA in a gene therapy study in humans," said Richard Heller, PhD, USF professor of medical microbiology and immunology who helped develop the technology used in the study.

Electroporation is a technique in which a hand-held device applied to the skin delivers pulses of electricity to open up pores in the tumor cell membrane. This opening allows a small therapeutic molecule -- in this case a molecule known as a DNA plasmid that contains the gene for Interleukin-12 -- to slip inside the melanoma tumor before the membrane reseals.


"Melanoma does not respond well to standard chemotherapy," said Adil Daud, MD, assistant professor of oncology in the Cutaneous Oncology Program at Moffitt. "Gene therapy gives us the flexibility to introduce a huge variety of potential targets for treatment, but its major limitation has been getting the gene into the cancer. If electroporation can deliver the gene to these tumors reliably and without serious side effects, melanoma and other cancers would be open to many new treatment possibilities."

Six years of laboratory studies by Dr. Heller and his colleagues preceded the initial human trial begun earlier this year at Moffitt. The collaboration of USF and Moffitt in this trial is a good example of translational research -- moving the new application of a gene transfer technology from an animal model to the patient. Dr. Heller’s team worked extensively with Dr. Daud to adapt the electroporation technique used on mice to humans.

The researchers injected the DNA plasmid, which encodes a gene that stimulates the immune system, directly into the tumor site in mice. Then, they applied electroporation to the site to help the plasmid move into the tumor cells. The tumor cells used the plasmid’s genetic instructions to make proteins. These proteins signaled the immune system to recognize the melanoma tumors as abnormal and attack.

Eighty percent of the mice were cured with this therapy -- their tumors disappeared and the treated animals remained disease free for the full length of the study (100 days), Dr. Heller said.

Furthermore, he said, even when melanoma cells were reinjected into the cured mice the tumors were rejected. This indicates the immune system formed a memory response that recognized the melanoma cells as foreign and prevented tumor regrowth.

"We were very encouraged by the results of the preclinical studies." Dr. Heller said. "We’re hoping this translates into a beneficial treatment for patients."

The Phase 1 clinical trial by Moffitt and Genetronics Biomedical Corp is evaluating the safety of the electroporation technology in treating patients with advanced melanoma. The trial expects to enroll 18 to 25 patients.

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.hsc.usf.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>