Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radar tracking reveals that butterflies follow decisive flight paths

06.04.2005


Butterfly with antenna attached. BBSRC and Rothamsted Research


The charming meanderings of butterflies are not as random as they appear, according to new research1. Scientists at Rothamsted Research,2 a research institute sponsored by the Biotechnology and Biological Sciences Research Council (BBSRC) in Hertfordshire, have found that their seemingly irresolute flutterings are in fact decisive flight paths. The harmonic radar has been used before to track the flights of bumblebees and honeybees. Now it has been shown to work for butterflies too, opening a new window on the flight behaviour of these important pollinating species.

BBSRC-funded researcher Lizzie Cant has attached tiny radar transponders, weighing only about 12mg (4-8% of body weight), to peacock or small tortoiseshell butterflies. This allows her to use harmonic radar to track the butterfly’s position accurately up to 1km away. Previous studies had to use visual observation (difficult over 50m) or indirect mark-recapture techniques.

Butterflies were tracked undertaking fast, directed flights to potential feeding sites or interspersing periods of foraging with looping "orientation" flights. Knowing how butterflies navigate can help us understand how capable they are of maintaining sustainable populations in our increasingly fragmented countryside.



Lizzie Cant said, "Butterflies are important pollinators, providing a crucial service to plants in many ecosystems. This research will help us to understand a little more about how they survive in a countryside that is becoming more and more fragmented."

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>