Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stitching up MRSA with viruses

06.04.2005


Nylon strips, beads and hospital stitching thread covered in viruses could be an effective weapon against the hospital acquired superbug, methicillin-resistant Staphylococcus aureus, known as MRSA, according to research presented today (Tuesday, 05 April 2005) at the Society for General Microbiology’s 156th Meeting at Heriot-Watt University, Edinburgh.



Scientists from the University of Strathclyde have developed a method of chemically bonding a type of virus called a bacteriophage, which normally only targets bacteria cells, to nylon products, which it can then use as a base from which to attack the deadly MRSA.

"By immobilising this bacteriophage onto nylon we can prolong its life and usefulness, in different temperature and humidity conditions. Normally it gets targeted by our immune system and cleared away if injected into people, and also dies quickly in dry conditions," says Dr Janice Spencer from the University of Strathclyde. "We found a phage which is effective against most of the major epidemic MRSA strains. The nylon can be in different forms including strips, sutures and beads."


The scientists have shown in trials that the immobilised bacteriophage on the thread used for surgical stitches can prevent wounds from becoming infected. Once the phages are bonded to the nylon they are more tolerant of drying out and can remain active for two weeks instead of dying within hours.

The immobilised bacteriophages can also be incorporated into cleaning materials or creams to remove antibiotic resistant bacteria from skin or hospital surfaces, made into wound dressings, or an injectable form to treat MRSA infections.

Faye Jones | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>