Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses could deliver HIV, malaria, rabies and cancer vaccines as pills

06.04.2005


Rabies, HIV, cancer and malaria could all be prevented with pills in the future, if a new technique using specially modified viruses to deliver vaccines is adopted, according to scientists speaking today (Tuesday, 05 April 2005) at the Society for General Microbiology’s 156th Meeting at Heriot-Watt University, Edinburgh.



"We can take a special type of virus which only infects bacteria, called a bacteriophage, and replace some of its DNA with vaccine DNA, and then use the phage to deliver vaccines in a highly efficient way," says Dr John March of the Moredun Research Institute, Penicuik, near Edinburgh.

A vaccine packaged in this way is cheap, simple to make, stable, and environmentally safe according to the researchers. Because the phage vaccine can be safely stored at room temperature as a dry powder, it should be possible to turn it into a pill form and deliver it as an oral vaccine. Since the phages can mass produce themselves the system would be very cheap, and easy to store and administer, making it ideal for use in the developing world to protect against diseases such as HIV/AIDS and malaria.


"We have already tested oral delivery of these vaccines, and the data suggest that they work," says Dr March. "We have successful test results from mice, rabbits and sheep - animals in which conventional DNA vaccines do not work - so we are confident that the technique will work for people. Bacteriophages have been used as medicines in eastern Europe since the 1930s to fight bacterial infections, so we have a long history of their safe use in humans, and of large scale manufacturing."

The phage vaccines have several advantages over traditional ’naked’ DNA vaccines - they can contain much larger sections of DNA, triggering a more effective immune response. Because the phage vaccine is protected within a virus shell it can be targeted at specific cells in the body, and the shell stops it breaking down and becoming ineffective.

The new vaccines can also be used for diseases where the vaccine material is difficult or expensive to produce using conventional approaches, such as for cancers. The doses needed are much smaller than conventional DNA vaccines, where high doses and multiple injection regimes are often needed. The large cloning capacity of phages means that several vaccines could be delivered simultaneously.

The main applications will be in producing cheap general vaccines for the developing world, and in specialist applications in the developed world in situations where conventional vaccines do not work. In developing countries a pill form of vaccine would do away with the need for scarce and expensive cold storage systems, and also will have no need for a constant supply of clean needles.

"Wildlife use is also ideal since phages are cheap and stable so we can use them in baits or with oral delivery," says Dr March. "This would be ideal for a rabies vaccine, where wildlife programmes will play a major role in disease eradication. The antibody response against the phage is a useful side effect as it gives us a simple marker to tell between vaccinated and naturally infected animals."

"The special phages we are using cannot replicate outside the laboratory, so they are environmentally safe and friendly," explains Dr John March. "The fact that we can make them with the bare minimum of laboratory equipment and expertise only adds to the potential of this exciting new technology."

Faye Jones | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>