Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells in the liver take a ride

05.04.2005


Scientists at New York University School of Medicine viewing the actual journey of immune cells in the liver have found that these cells travel in the liver’s blood vessels with surprising speed and agility.



It is the first time that the movement of live immune cells called natural killer T (NKT) cells has been seen in the liver, according to a study published in the April 5, 2005, issue of the Public Library of Science, an open-access, online journal.

NKT cells are the guardians of the liver. They patrol the liver for foreign molecules on bacteria and viruses and once they find the interlopers, they alert the immune system to their presence. They are also thought to play a role in disposing of damaged cells, and in scouting for tumors.


Led by Dan R. Littman, M.D., PhD., professor of pathology and a Howard Hughes Medical Institute Investigator, and Michael L. Dustin, Ph.D., associate professor of pathology, the study analyzed over a period of hours the movement of NKT cells and their response to foreign protein, or antigen, in mice.

The study revealed a number of surprises. First, the NKT cells did their work almost entirely within the blood vessels of the liver. Previously, conventional theory held that these cells were forced from the blood into the tissues, where they did their specialized work. "This is the first example of a system in which a cell’s surveillance for antigen is intravascular rather than within a tissue," says Dr. Littman.

Second, the NKT cells appeared to have the agility of a pro athlete. The cells moved and changed directions quickly, sometimes traveling against the direction of flowing blood, no mean feat.

The researchers were able to trace the movement of the cells, by replacing a gene called CXCR6 with a gene for green fluorescent protein, which glows and makes the cells visible under a microscope. The researchers used a technique called intravital fluorescence microscope imaging to observe the behavior of the glowing cells in live mice.

The study showed that the cells were undisturbed by the rapid blood flow, latching on to the vessels, then moving in random patterns in search of infected cells. "Despite the force of the directional blood flow, the cells were able to hold their own, moving and changing direction, sometimes passing each other within a single blood vessel," explains Dr. Dustin.

In another part of the study, the researchers injected a foreign molecule. Here again, the cells behaved like athletes. They abruptly stopped and remained still, signaling that they had found the antigen and were ready to undertake their next task of alerting the immune system.

And there was yet another surprise. Drs. Littman and Dustin had expected that replacing the CXCR6 gene would directly affect the movement of the NKT cells. The CXCR6 gene encodes a receptor molecule on the surface of cells that is involved in cell movement and attraction. Replacement of the gene, which renders the cells receptor-deficient, should inhibit their ability to cling to the vessels, thereby directly inhibiting their movement.

But the researchers found that the replacement of the gene did not affect the movement of NTK cells, they hung on and patrolled for invaders just as well as cells with the gene. However, their survival rate was reduced, leading the scientists to surmise that the gene was somehow involved directly in a survival mechanism.

Dr. Littman explains the experiments so far have been artificial because the antigen was injected. The next step is to determine the kinds of pathological situations in which the cells become activated.

Dr. Dustin says his laboratory now is investigating a mouse model for liver fibrosis, triggered by bile duct obstruction, to see how cells with CXCR6 move under various conditions. "There is also significant interest in studying the way in which NKT cells respond to antigen so that they might be used in tumor vaccines," he says.

Pamela McDonnell | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>