Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding Natural Killers Could Lead to New Hepatitis Treatments

05.04.2005


Researchers have discovered that natural killer T (NKT) cells, the immune system’s sentinels, patrol the labyrinthine blood vessels of the liver for invaders or signs of tissue damage and demonstrate a dogged behavior not seen before in other T cells.



The new studies show that NKT cells crawl along vessel walls, even upstream against blood flow. They halt only when they receive a chemical signal to unleash an immune-system assault on marauding microbes, other invaders or damaged tissue.

The findings offer a new way of thinking about this important class of immune cell, which is responsible for the inflammation and cell death in the liver due to hepatitis. Hepatitis can be a reaction to viruses, parasites such as malaria or other infections. Learning to “call off” the NKT cell’s pursuit and attack could offer a treatment for hepatitis and associated complications.


The researchers, led by Dan Littman, a Howard Hughes Medical Institute investigator at New York University (NYU) School of Medicine, published their findings online on April 5, 2005, in the Public Library of Science Biology. Lead authors on the paper were Frederick Geissman in Littman’s laboratory and Thomas Cameron in the laboratory of co-author Michael L. Dustin, also of NYU. Other co-authors were from the La Jolla Institute for Allergy and Immunology and Millennium Pharmaceuticals in Cambridge, Mass.

Although it was known that NKT cells were more prevalent in the liver than in any other organ, said Littman, it was not known how they accomplish the Herculean task of immune surveillance in the liver. The liver detoxifies and removes waste products from the blood. Inside the liver, vascular passages, or “sinusoids,” are filled with a witches’ brew of nutrients, toxins, proteins, lipids and other chemicals. Thus, immune guardians that patrol the liver must tolerate many foreign molecules, yet respond readily to infection.

“It wasn’t clear how NKT cells survey (tissue), or even if they survey at all,” said Littman. To visualize the activity of NKT cells in the liver, Geissman used mice in which NKT cells were tagged with a fluorescent marker. This was accomplished by replacing the gene encoding a characteristic NKT cell surface receptor called CXCR6 with the gene for green fluorescent protein. Although the CXCR6 receptor is known to be central to the function of NKT cells, its overall role was not known, said Littman.

Working with Geissman, Cameron adapted a technique called intravital fluorescence microscopy that enabled them to observe in real time the behavior of the tagged cells in the livers of mice.

“The startling discovery was that these NKT cells just move within the sinusoids intravascularly,” said Littman. By contrast, he said, immune cells in the lymph nodes and spleen perform their surveillance ensconced within specialized compartments shielded from the turmoil of the bloodstream. “In this case, it looks like NKT cells are doing their surveillance from within the vessels,” he said.

The observations revealed that the NKT cells crawl randomly within the sinusoids, even against blood flow, passing one another and even changing direction, said Littman. “It is very different from the kind of classical mechanism of lymphocytes rolling through vessels with the blood flow and when they are activated coming to a stop and then crossing through vessel walls in response to a signal.”

The researchers observed that the roving NKT cells stopped their movement when alerted by a foreign protein, called an antigen, “We think this is a reflection of their normal function of searching for antigen,” said Littman. “Whenever there is detection of antigen reflecting some kind of damage or local infection, the cell would stop in the vicinity of that signal and provide cytokine signals that would attract other inflammatory cells that destroy the invading microorganism and may also facilitate repair of the damage.”

In other experiments, the researchers explored the role of the CXCR6 receptor in the NKT cell’s behavior. Receptors are protein sensors that nestle in the membranes of cells and detect external signaling molecules called ligands. When ligands are bound by the receptor, a specific chemical signal is transmitted to the interior of the cell.

In the case of NKT cells, the researchers found that the mice genetically rendered deficient in CXCR6 showed reduced survival of their NKT cells, but no change in the speed or pattern of their patrolling. The studies showed that the presence of CXCR6 prolonged the NKT cells’ survival. The researchers also found that the NKT cells of CXCR6-deficient mice showed a reduced patrolling, as well as a decreased severity of artificially induced hepatitis.

“So, all the evidence we can obtain so far points to CXCR6 being involved in promoting survival of these NKT cells when they get into the environment of the liver, and that’s how the cells tend to accumulate there,” said Littman. “Our data don’t support a critical role of CXCR6 in crawling behavior of the cells.”

Evidence for the role of CXCR6 in the survival of NKT cells — as well as the cells’ involvement in triggering hepatitis — suggests a possible clinical implication of the findings, said Littman. “In general, these NKT cells could have an important inflammatory role, particularly in the case of chronic hepatitis,” he said. “If that is the case, we speculate that it may be possible to manipulate the NKT cell, perhaps by interfering with CXCR6 function, to ameliorate the inflammatory process,” he said.

Still unknown, said Littman, is which antigens alert NKTs to infections, as well as the nature of the regulatory machinery of crawling and stopping. The chemical the researchers used in their experiment is a general immune activator and does not reflect what occurs during an actual infection, he noted. Such knowledge would offer important insights into the mechanism of inflammation and liver damage due to infections, he said.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>