Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. Iowa researchers improve Huntington’s disease symptoms in mice

05.04.2005


Researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine have taken another step toward a potential treatment for Huntington’s disease (HD). Using an approach called RNA interference (RNAi), the scientists reduced levels of the disease-causing HD protein in mice and significantly improved the movement and neurological abnormalities normally associated with the disease.



HD is a devastating, inherited, neurodegenerative disease that is progressive and always fatal. The disease-causing gene produces a protein that is toxic to certain brain cells, and the subsequent neuronal damage leads to the movement disorders, psychiatric disturbances and cognitive decline that characterize this disease.

"Many of the current approaches aimed at treating HD are indirect and target the symptoms of the disease. RNA interference gives us the first opportunity to attack the fundamental problem and reduce protein expression from the disease gene," said Beverly L. Davidson, Ph.D., the Roy J. Carver Chair in Internal Medicine and UI professor of internal medicine, physiology and biophysics, and neurology. "Our study is the first demonstration that a therapy designed to inhibit protein production has a beneficial effect."


The study will appear this week in the Online Early Edition of the Proceedings of the National Academy of Sciences (www.pnas.org). Davidson is the senior author and Scott Harper, Ph.D., a postdoctoral researcher in Davidson’s lab, is lead author.

Harper, Davidson and their colleagues used RNAi to treat a mouse model of HD. Viral vectors (stripped-down viruses) carrying the genetic instructions to make a RNA interference molecule were injected into the brains of genetically engineered mice before the disease symptoms appeared. The treated mice showed nearly normal movement, and the characteristic neurological damage also was significantly improved in comparison to untreated mice.

Detailed examination of the protein levels in the treated mice showed that levels of the toxic HD protein were reduced to about 40 percent of the level seen in untreated mice.

"It is very exciting that a partial reduction is sufficient to produce a very beneficial effect in the animal. It means that we don’t have to turn the gene off completely," Davidson said. "For a disease that takes decades to develop, a partial reduction may slow down the disease-causing copy of the gene to such an extent that either disease progression is delayed or possibly even disease onset is prevented."

It may even be the case that a partial reduction of toxic protein levels allows the brain cells’ machinery to "catch up" with the disease-causing protein and clear out the damage caused by the mutant protein.

The genetically engineered or transgenic mouse model used by the UI team carries a section of the human HD gene. These mice quickly develop movement and coordination abnormalities and they die young. Aggregates, or clumps of protein, also develop in certain brain cells.

Davidson explained that this mouse is very good for proof-of-principle experiments, allowing the researchers to ask a very pointed question – can RNAi improve HD-like symptoms in a mouse model in short order?

"Since our results are positive, we can now repeat the experiment in mouse models that develop disease more slowly and more closely resemble HD in humans," Davidson said.

Most genes are inherited as a pair, one from either parent. In HD, one mutated copy of the gene is sufficient to cause the disease. However, the normal Huntington gene produces a protein that is known to be critical in embryonic development. It is not known if the protein is critical in adult brain cells.

The RNAi molecule used in Davidson’s current study would silence both the mutant and the normal gene. So, an important question that still needs to be addressed is whether adult neurons can tolerate and benefit from a partial reduction of both the toxic and the normal protein. If the normal protein is critical, then RNAi will need to be specifically targeted against the disease-causing gene.

Fortunately, RNAi is exactly the right tool to provide an answer regarding whether the normal gene is critical by silencing the normal gene in adult brain cells of HD models.

Despite the remaining hurdles, Davidson is optimistic about the potential of RNAi to treat HD and similar neurodegenerative diseases.

"If the benefit is confirmed in other mouse models of Huntington’s disease, and it appears that we don’t need to target the RNAi specifically to the disease-causing mutant gene, then I would think it might move to human testing within several years," she said.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>