Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. Iowa researchers improve Huntington’s disease symptoms in mice

05.04.2005


Researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine have taken another step toward a potential treatment for Huntington’s disease (HD). Using an approach called RNA interference (RNAi), the scientists reduced levels of the disease-causing HD protein in mice and significantly improved the movement and neurological abnormalities normally associated with the disease.



HD is a devastating, inherited, neurodegenerative disease that is progressive and always fatal. The disease-causing gene produces a protein that is toxic to certain brain cells, and the subsequent neuronal damage leads to the movement disorders, psychiatric disturbances and cognitive decline that characterize this disease.

"Many of the current approaches aimed at treating HD are indirect and target the symptoms of the disease. RNA interference gives us the first opportunity to attack the fundamental problem and reduce protein expression from the disease gene," said Beverly L. Davidson, Ph.D., the Roy J. Carver Chair in Internal Medicine and UI professor of internal medicine, physiology and biophysics, and neurology. "Our study is the first demonstration that a therapy designed to inhibit protein production has a beneficial effect."


The study will appear this week in the Online Early Edition of the Proceedings of the National Academy of Sciences (www.pnas.org). Davidson is the senior author and Scott Harper, Ph.D., a postdoctoral researcher in Davidson’s lab, is lead author.

Harper, Davidson and their colleagues used RNAi to treat a mouse model of HD. Viral vectors (stripped-down viruses) carrying the genetic instructions to make a RNA interference molecule were injected into the brains of genetically engineered mice before the disease symptoms appeared. The treated mice showed nearly normal movement, and the characteristic neurological damage also was significantly improved in comparison to untreated mice.

Detailed examination of the protein levels in the treated mice showed that levels of the toxic HD protein were reduced to about 40 percent of the level seen in untreated mice.

"It is very exciting that a partial reduction is sufficient to produce a very beneficial effect in the animal. It means that we don’t have to turn the gene off completely," Davidson said. "For a disease that takes decades to develop, a partial reduction may slow down the disease-causing copy of the gene to such an extent that either disease progression is delayed or possibly even disease onset is prevented."

It may even be the case that a partial reduction of toxic protein levels allows the brain cells’ machinery to "catch up" with the disease-causing protein and clear out the damage caused by the mutant protein.

The genetically engineered or transgenic mouse model used by the UI team carries a section of the human HD gene. These mice quickly develop movement and coordination abnormalities and they die young. Aggregates, or clumps of protein, also develop in certain brain cells.

Davidson explained that this mouse is very good for proof-of-principle experiments, allowing the researchers to ask a very pointed question – can RNAi improve HD-like symptoms in a mouse model in short order?

"Since our results are positive, we can now repeat the experiment in mouse models that develop disease more slowly and more closely resemble HD in humans," Davidson said.

Most genes are inherited as a pair, one from either parent. In HD, one mutated copy of the gene is sufficient to cause the disease. However, the normal Huntington gene produces a protein that is known to be critical in embryonic development. It is not known if the protein is critical in adult brain cells.

The RNAi molecule used in Davidson’s current study would silence both the mutant and the normal gene. So, an important question that still needs to be addressed is whether adult neurons can tolerate and benefit from a partial reduction of both the toxic and the normal protein. If the normal protein is critical, then RNAi will need to be specifically targeted against the disease-causing gene.

Fortunately, RNAi is exactly the right tool to provide an answer regarding whether the normal gene is critical by silencing the normal gene in adult brain cells of HD models.

Despite the remaining hurdles, Davidson is optimistic about the potential of RNAi to treat HD and similar neurodegenerative diseases.

"If the benefit is confirmed in other mouse models of Huntington’s disease, and it appears that we don’t need to target the RNAi specifically to the disease-causing mutant gene, then I would think it might move to human testing within several years," she said.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>