Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. Iowa researchers improve Huntington’s disease symptoms in mice

05.04.2005


Researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine have taken another step toward a potential treatment for Huntington’s disease (HD). Using an approach called RNA interference (RNAi), the scientists reduced levels of the disease-causing HD protein in mice and significantly improved the movement and neurological abnormalities normally associated with the disease.



HD is a devastating, inherited, neurodegenerative disease that is progressive and always fatal. The disease-causing gene produces a protein that is toxic to certain brain cells, and the subsequent neuronal damage leads to the movement disorders, psychiatric disturbances and cognitive decline that characterize this disease.

"Many of the current approaches aimed at treating HD are indirect and target the symptoms of the disease. RNA interference gives us the first opportunity to attack the fundamental problem and reduce protein expression from the disease gene," said Beverly L. Davidson, Ph.D., the Roy J. Carver Chair in Internal Medicine and UI professor of internal medicine, physiology and biophysics, and neurology. "Our study is the first demonstration that a therapy designed to inhibit protein production has a beneficial effect."


The study will appear this week in the Online Early Edition of the Proceedings of the National Academy of Sciences (www.pnas.org). Davidson is the senior author and Scott Harper, Ph.D., a postdoctoral researcher in Davidson’s lab, is lead author.

Harper, Davidson and their colleagues used RNAi to treat a mouse model of HD. Viral vectors (stripped-down viruses) carrying the genetic instructions to make a RNA interference molecule were injected into the brains of genetically engineered mice before the disease symptoms appeared. The treated mice showed nearly normal movement, and the characteristic neurological damage also was significantly improved in comparison to untreated mice.

Detailed examination of the protein levels in the treated mice showed that levels of the toxic HD protein were reduced to about 40 percent of the level seen in untreated mice.

"It is very exciting that a partial reduction is sufficient to produce a very beneficial effect in the animal. It means that we don’t have to turn the gene off completely," Davidson said. "For a disease that takes decades to develop, a partial reduction may slow down the disease-causing copy of the gene to such an extent that either disease progression is delayed or possibly even disease onset is prevented."

It may even be the case that a partial reduction of toxic protein levels allows the brain cells’ machinery to "catch up" with the disease-causing protein and clear out the damage caused by the mutant protein.

The genetically engineered or transgenic mouse model used by the UI team carries a section of the human HD gene. These mice quickly develop movement and coordination abnormalities and they die young. Aggregates, or clumps of protein, also develop in certain brain cells.

Davidson explained that this mouse is very good for proof-of-principle experiments, allowing the researchers to ask a very pointed question – can RNAi improve HD-like symptoms in a mouse model in short order?

"Since our results are positive, we can now repeat the experiment in mouse models that develop disease more slowly and more closely resemble HD in humans," Davidson said.

Most genes are inherited as a pair, one from either parent. In HD, one mutated copy of the gene is sufficient to cause the disease. However, the normal Huntington gene produces a protein that is known to be critical in embryonic development. It is not known if the protein is critical in adult brain cells.

The RNAi molecule used in Davidson’s current study would silence both the mutant and the normal gene. So, an important question that still needs to be addressed is whether adult neurons can tolerate and benefit from a partial reduction of both the toxic and the normal protein. If the normal protein is critical, then RNAi will need to be specifically targeted against the disease-causing gene.

Fortunately, RNAi is exactly the right tool to provide an answer regarding whether the normal gene is critical by silencing the normal gene in adult brain cells of HD models.

Despite the remaining hurdles, Davidson is optimistic about the potential of RNAi to treat HD and similar neurodegenerative diseases.

"If the benefit is confirmed in other mouse models of Huntington’s disease, and it appears that we don’t need to target the RNAi specifically to the disease-causing mutant gene, then I would think it might move to human testing within several years," she said.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>