Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find molecular pathway suspected in precancerous stomach lesions

05.04.2005


May lead to improved diagnosis and prevention of stomach-esophagus cancer



Researchers at Dana-Farber Cancer Institute have identified a chain of molecular signals that generate the specialized lining of the stomach during fetal development – a discovery that could lead to better diagnosis, treatment and prevention of stomach and esophageal cancer in adults.

Damage to the stomach lining, such as from acid reflux or helicobacter pylori (H. pylori) infections, might reactivate the newly found signaling pathway – but in this situation it would work in the opposite direction. As a result, the lining reverts to a more generic intestinal type of cells that form cancer-prone lesions.


Ramesh Shivdasani, MD, PhD, of Dana-Farber, senior author of a report in the April 4 issue of Developmental Cell, said the finding "opens a window that could help us eventually interfere with these pathways when they become abnormal. It should give us a list of potential therapeutic targets and could even help us to prevent the development of the precancerous lesions."

The lead author is Byeong-Moo Kim, PhD, also of Dana-Farber.

Patients with the increasingly common disorder known as Gastroesophageal Reflux Disease, or GERD, are at risk of developing precancerous lesions in the upper end of the stomach or the adjoining lower end of the esophagus. These lesions require intense frequent monitoring by endoscopy and sometimes prophylactic surgery to decrease the threat of this dangerous form of cancer. Cancer of the "gastroesophageal junction" has increased dramatically in the past two decades, especially in patients younger than 40 years.

Shivdasani’s laboratory studies the "rules" according to which body tissues develop their distinctive form and function at the beginning of life, because they may be reactivated, abnormally, when cancer arises later.

"Cancers of the stomach are almost always preceded by the conversion of the stomach type of lining to an intestinal type," says Shivdasani. In the developing fetus, the entire digestive tract is initially lined with intestinal-type cells. At a certain point, the activation of a molecular signaling pathway causes this layer to become more specialized, or differentiated, for the lining of the stomach and esophagus. Thereafter, the pathway falls silent, unless, many years later, damage to the lining sets it in motion again.

In the mouse fetus, the differentiation of intestinal lining into stomach lining happens rapidly, during a window of only one day, around the 12th and 13th days of gestation. (The corresponding period in the human fetus is during the 8th to 10th weeks.)

"We found that the epithelium [lining layer] is malleable, and depends completely on this pathway to instruct it to become stomach," says Shivdasani. "In the absence of this pathway, the epithelium would develop into the default intestinal state."

In experiments in mice, and with cultured mouse stomach and intestinal tissue, the scientists demonstrated that the signals that drive the differentiation of stomach lining are sent by a layer of cells, known as mesenchyme, that lie directly beneath the intestinal lining. The key player in the signaling pathway, they found, is a transcription factor – a protein that governs the expression of genes under its control – called Barx1. The main action of Barx1 in stomach lining formation is to block signaling through another pathway known as Wnt, the scientists found.

"Barx1 gives us a handle on what elements of the pathway might allow the stomach to differentiate abnormally into intestine as a result of injury to the stomach lining, setting the stage for cancer," Shivdasani says.

"These research findings offer the hope of identifying a protein marker that can be used to screen for these diseases and even to serve as a target for newly designed forms of therapy," said Robert Mayer, MD, director of Dana-Farber’s Center for Gastrointestinal Oncology, who was not involved in the study.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>