Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique finds molecules necessary for cancer metastasis

05.04.2005


Provides unique drug targets to prevent spread

Tufts University researchers have identified several proteins on the surface of cancer cells that contribute to the cells’ ability to metastasize. When the researchers destroyed these particular proteins, the cancerous cells show a significant decrease in their ability to invade healthy cells – a finding that provides a new target for badly needed drugs. Although most cancer deaths occur from metastasis, not from the original cancer itself, no drug treatments are currently available specifically to prevent the spread of the cancer from the original site to other organs. The team also has discovered new roles related to the spread of cancer in two molecules known for other, non-cancer activities.

Dr. Daniel Jay presented the study on Sunday, April 3, at Experimental Biology 2005 in San Diego, as part of the scientific sessions of the American Society for Biochemistry and Molecular Biology.



The findings were made possible, says Dr. Jay, because he and his colleagues have developed a new Fluorform-Assisted Light Inactivation technology (FALI) that is a new generation of the Chromophore-Assisted Laser Inactivation (CALI) technique he created 17 years ago to inactivate specific proteins in living cells at precise times and locations. The researchers are able to destroy a specific protein, sparing all other proteins attached to the cell as well as the cell itself, by targeting the antibody to that specific cell. They tag the antibody with a dye that absorbs a specific wavelength of light. When the light is turned on (earlier technology required lasers; the new FALI technology needs only the light of a slide projector), the light energy absorbed by the dye in the antibody generates free radicals that destroy the specific protein bound by that antibody.

What gives the new FALI approach its power, says Dr. Jay, is its high throughput and its ability to couple with the large antibody libraries now available. Whereas the team used to look at one protein at a time, it now can rapidly scan thousands of the proteins associated with cancer cells, systematically "knocking out" one at a time and looking for those whose absence on the cell causes a significant decrease in invasiveness.

At the Experimental Biology 2005, Dr. Jay also describes two of the molecules identified by the FALI approach to have large implications for metastasis. Both were well known to scientists, but the Jay team is the first to recognize the roles they play in cancer. The first molecule, HSP90A, is a molecular chaperone that facilities the folding and activation of different proteins within the cells. The Jay laboratory was the first to recognize HSP90A also had a role outside the cell; it activates a particular matrix metalloprotease required for restructuring the surrounding matrix as cells move and invade.

The second molecule, the polio virus receptor CD155, has been recognized for decades as the pathway by which the polio virus is able to enter motor neurons in the nervous system. Dr. Jay and his team have found that the receptor also plays a role in how brain tumor cells move in the brain, spreading to healthy cells.

"Our current interest is cell motility related to the spread of cancer," says Dr. Jay, "but the speed and sensitivity of the FALI approach gives it wide applicability as a method to identify functionally important proteins in a variety of disease processes."

Coauthors of the presentation are Brenda Eustace, Takashi Sakurai, and Kevin Sloan. Funding for the study came from the National Cancer Institute and the Goldhirsh Foundation.

Sarah Goodwin | EurekAlert!
Further information:
http://www.faseb.org/

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>