Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technique finds molecules necessary for cancer metastasis


Provides unique drug targets to prevent spread

Tufts University researchers have identified several proteins on the surface of cancer cells that contribute to the cells’ ability to metastasize. When the researchers destroyed these particular proteins, the cancerous cells show a significant decrease in their ability to invade healthy cells – a finding that provides a new target for badly needed drugs. Although most cancer deaths occur from metastasis, not from the original cancer itself, no drug treatments are currently available specifically to prevent the spread of the cancer from the original site to other organs. The team also has discovered new roles related to the spread of cancer in two molecules known for other, non-cancer activities.

Dr. Daniel Jay presented the study on Sunday, April 3, at Experimental Biology 2005 in San Diego, as part of the scientific sessions of the American Society for Biochemistry and Molecular Biology.

The findings were made possible, says Dr. Jay, because he and his colleagues have developed a new Fluorform-Assisted Light Inactivation technology (FALI) that is a new generation of the Chromophore-Assisted Laser Inactivation (CALI) technique he created 17 years ago to inactivate specific proteins in living cells at precise times and locations. The researchers are able to destroy a specific protein, sparing all other proteins attached to the cell as well as the cell itself, by targeting the antibody to that specific cell. They tag the antibody with a dye that absorbs a specific wavelength of light. When the light is turned on (earlier technology required lasers; the new FALI technology needs only the light of a slide projector), the light energy absorbed by the dye in the antibody generates free radicals that destroy the specific protein bound by that antibody.

What gives the new FALI approach its power, says Dr. Jay, is its high throughput and its ability to couple with the large antibody libraries now available. Whereas the team used to look at one protein at a time, it now can rapidly scan thousands of the proteins associated with cancer cells, systematically "knocking out" one at a time and looking for those whose absence on the cell causes a significant decrease in invasiveness.

At the Experimental Biology 2005, Dr. Jay also describes two of the molecules identified by the FALI approach to have large implications for metastasis. Both were well known to scientists, but the Jay team is the first to recognize the roles they play in cancer. The first molecule, HSP90A, is a molecular chaperone that facilities the folding and activation of different proteins within the cells. The Jay laboratory was the first to recognize HSP90A also had a role outside the cell; it activates a particular matrix metalloprotease required for restructuring the surrounding matrix as cells move and invade.

The second molecule, the polio virus receptor CD155, has been recognized for decades as the pathway by which the polio virus is able to enter motor neurons in the nervous system. Dr. Jay and his team have found that the receptor also plays a role in how brain tumor cells move in the brain, spreading to healthy cells.

"Our current interest is cell motility related to the spread of cancer," says Dr. Jay, "but the speed and sensitivity of the FALI approach gives it wide applicability as a method to identify functionally important proteins in a variety of disease processes."

Coauthors of the presentation are Brenda Eustace, Takashi Sakurai, and Kevin Sloan. Funding for the study came from the National Cancer Institute and the Goldhirsh Foundation.

Sarah Goodwin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>