Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New miniaturised chip dramatically reduces time taken for DNA analysis

05.04.2005


A team of researchers at the Universitat Autònoma de Barcelona has developed new miniature sensors for analysing DNA. The sensors have the same size and thickness as a fingernail and reduce the time needed to identify DNA chains to several minutes or a few hours, depending on each chain. These sensors can be applied to many different tasks, ranging from paternity tests and identifying people to detecting genetically modified food, identifying bacterial strains in foodborne illnesses and testing genetic toxicity in new drugs. Once mass production of the sensors begins, their cost and availability will be similar to that of pregnancy test kits found in pharmacies.



The researchers Salvador Alegret, Manuel del Valle and Maria Isabel Pividori, all of whom are members of the Sensors and Biosensors Group at the UAB’s Department of Chemistry, developed the new sensors based on their experience in research with electrochemical sensors. These can identify a substance by chemically interacting with it and converting this interaction into an electrical current that they measure.

To detect DNA, the new miniaturised electrochemical genosensors have a probe containing DNA fragments that complement the DNA they aim to detect. For example, to detect Salmonella in a sample of mayonnaise, the probe has fragments of the type of DNA that complements that found in a group of genes that identify the bacteria. When the probe is submerged into the mayonnaise, some of the DNA fragments from the bacterial cells join the complementing fragments from the probe, creating a measurable electrical current. The sensor converts this current into a signal that can be seen by the person controlling the tests, making him aware there are bacteria. Also, because the sensors are very small and easy to manipulate, it is possible to assemble a set of sensors that can collect data simultaneously and deduce information about the bacteria such as which strain caused the foodborne illness.


This type of analysis already takes place in laboratories, but until now the experimental measures needed were not suitable for in situ analysis. By using the new sensors developed by UAB scientists, the time taken to identify the source of infection for Legionella would decrease from two days, as is currently the case using organic production techniques, to just thirty minutes. In trials developed with the support of the UAB’s Department of Genetics and Microbiology, the new sensors have enabled Salmonella to be identified in four and a half hours, compared to three to five days using the traditional microbiological methods. This method for identifying bacteria could also be used to detect other infectious agents such as Campylobacter and Listeria, and the sensor could easily be adapted for use in medicine, environmental monitoring and the industrial sector.

Other important applications for DNA sensors include: detecting genetically modified organisms in food, either in basic ingredients or in prepared food; identifying people, either to establish blood relations or to find criminal evidence; and testing the toxicity of different drugs to establish what damage they may cause to the DNA molecule of disease-causing microorganisms and of cells in patients.

“The next step is to mass-produce the sensors”, states Salvador Alegret, the director of research. “Mass production will allow costs to be reduced and the product to become as widely available as pregnancy test kits we can buy at the local pharmacy”.

Electrochemical genosensors vs DNA chips

Identifying DNA chains has become increasingly important in biochemistry, medicine and biotechnology. But traditional DNA-analysis techniques are becoming outdated as demand increases for more genetic information to be found in less time and at a lower cost. An important step forward in this direction was the creation of DNA chips, in which the UAB played a leading role in Catalonia. Hundreds, or even thousands, of genetic tests can be performed simultaneously with these chips, which are now a vital part of any large-scale project, such as unlocking the genetic code of an organism. DNA chips are limited to a certain extent because of some very specific analytical problems, such as establishing the source of microbial contamination quickly and efficiently. The new miniaturised electrochemical genosensors meet the current need for DNA to be analysed at a low cost with easy-to-use devices that do not need to be supervised by highly trained scientists.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/uabdivulga/eng/in_depth/2005/genosensors0205.htm

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>