Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New miniaturised chip dramatically reduces time taken for DNA analysis

05.04.2005


A team of researchers at the Universitat Autònoma de Barcelona has developed new miniature sensors for analysing DNA. The sensors have the same size and thickness as a fingernail and reduce the time needed to identify DNA chains to several minutes or a few hours, depending on each chain. These sensors can be applied to many different tasks, ranging from paternity tests and identifying people to detecting genetically modified food, identifying bacterial strains in foodborne illnesses and testing genetic toxicity in new drugs. Once mass production of the sensors begins, their cost and availability will be similar to that of pregnancy test kits found in pharmacies.



The researchers Salvador Alegret, Manuel del Valle and Maria Isabel Pividori, all of whom are members of the Sensors and Biosensors Group at the UAB’s Department of Chemistry, developed the new sensors based on their experience in research with electrochemical sensors. These can identify a substance by chemically interacting with it and converting this interaction into an electrical current that they measure.

To detect DNA, the new miniaturised electrochemical genosensors have a probe containing DNA fragments that complement the DNA they aim to detect. For example, to detect Salmonella in a sample of mayonnaise, the probe has fragments of the type of DNA that complements that found in a group of genes that identify the bacteria. When the probe is submerged into the mayonnaise, some of the DNA fragments from the bacterial cells join the complementing fragments from the probe, creating a measurable electrical current. The sensor converts this current into a signal that can be seen by the person controlling the tests, making him aware there are bacteria. Also, because the sensors are very small and easy to manipulate, it is possible to assemble a set of sensors that can collect data simultaneously and deduce information about the bacteria such as which strain caused the foodborne illness.


This type of analysis already takes place in laboratories, but until now the experimental measures needed were not suitable for in situ analysis. By using the new sensors developed by UAB scientists, the time taken to identify the source of infection for Legionella would decrease from two days, as is currently the case using organic production techniques, to just thirty minutes. In trials developed with the support of the UAB’s Department of Genetics and Microbiology, the new sensors have enabled Salmonella to be identified in four and a half hours, compared to three to five days using the traditional microbiological methods. This method for identifying bacteria could also be used to detect other infectious agents such as Campylobacter and Listeria, and the sensor could easily be adapted for use in medicine, environmental monitoring and the industrial sector.

Other important applications for DNA sensors include: detecting genetically modified organisms in food, either in basic ingredients or in prepared food; identifying people, either to establish blood relations or to find criminal evidence; and testing the toxicity of different drugs to establish what damage they may cause to the DNA molecule of disease-causing microorganisms and of cells in patients.

“The next step is to mass-produce the sensors”, states Salvador Alegret, the director of research. “Mass production will allow costs to be reduced and the product to become as widely available as pregnancy test kits we can buy at the local pharmacy”.

Electrochemical genosensors vs DNA chips

Identifying DNA chains has become increasingly important in biochemistry, medicine and biotechnology. But traditional DNA-analysis techniques are becoming outdated as demand increases for more genetic information to be found in less time and at a lower cost. An important step forward in this direction was the creation of DNA chips, in which the UAB played a leading role in Catalonia. Hundreds, or even thousands, of genetic tests can be performed simultaneously with these chips, which are now a vital part of any large-scale project, such as unlocking the genetic code of an organism. DNA chips are limited to a certain extent because of some very specific analytical problems, such as establishing the source of microbial contamination quickly and efficiently. The new miniaturised electrochemical genosensors meet the current need for DNA to be analysed at a low cost with easy-to-use devices that do not need to be supervised by highly trained scientists.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/uabdivulga/eng/in_depth/2005/genosensors0205.htm

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>