Scientists find viruses can’t stick to sea bugs in the dark

Blue-green algae, or cyanobacteria, in the seas are as vital to the survival of life on earth as the oxygen producing plants are on land. But marine bacteria are attacked by viruses, which can seriously affect their life-sustaining abilities but mow a researcher at the University of Warwick has discovered that these viruses don’t work in the dark, according to research presented today (Monday, 04 April 2005) at the Society for General Microbiology’s 156th Meeting at Heriot-Watt University, Edinburgh.

Our earth’s breathable atmosphere relies on millions and millions of cyanobacteria in the seas absorbing the sun’s light and giving off oxygen, in exactly the same way as the photosynthetic plants and forests on land act as the other part of the planet’s lungs. But the whole delicate balance of the seas, and so the overall fate of the planet, relies on even smaller microbes called cyanophages – marine viruses that specifically attack and infect cyanobacteria. These phages can seriously damage the health of the cyanobacteria, and also the sea.

Ying Jia, from the University of Warwick, is presenting new research today (Monday, 04 April 2005) at the Society for General Microbiology’s 156th Meeting in Scotland, which shows that these cyanophages depend on light to stick to their victims, and cannot function in the dark. “Understanding the function of light as one of the most important environmental factors of the phage-cyanobacteria interaction is vital,” says Ying Jia.

Cyanophages may be an important weapon against problematic algal blooms. On hot, sunny days algae can cause massive, toxic blooms, poisoning huge areas of the sea with their waste products and killing fish, sea mammals such as whales, dolphins and seals, and even humans. Control of these blooms is vital to the health of the seas.

“Research using cyanophages to control blooms of cyanobacteria must take light into consideration,” explains Ying Jia. Algal blooms can use up the oxygen in water and block out the sunlight that other organisms need to live. “If there is not sufficient light, the spread of the phage might be decreased, which could undermine the efficiency of phage treatment.”

Ying Jia hopes that the research will lead to a better understanding of the relationship between phage and cyanobacteria and so the health of the seas, but may also eventually lead to efficient methods of controlling cyanobacteria blooms in an environmentally friendly way, by using these natural viruses.

Media Contact

Ms Ying Jia EurekAlert!

More Information:

http://www.warwick.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors