Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T researchers map role of Epstein-Barr virus in cancer

01.04.2005


Researchers at the University of Toronto have mapped the molecular details that show how a viral protein coded in the Epstein-Barr virus immortalizes cells and causes them to continuously grow, thereby predisposing people to certain types of cancer.



"Epstein-Barr virus (EBV) is one of the most common human viruses in the world and is strongly linked to certain b-cell cancers like Burkitt’s lymphoma as well as the epithelial cell cancer, nasopharyngeal carcinoma. EBNA1 is a protein coded in the Epstein-Barr virus and suspected to play a role in the development of cancer," says Lori Frappier, professor in medical genetics and microbiology at U of T and senior author of a paper in the April 1 issue of Molecular Cell.

"This research shows how EBNA1 interferes with natural cell growth regulation by binding to a particular protein in cells, causing them to continue growing and therefore increasing the risk of becoming cancerous."


Frappier explains that all cells contain the two proteins – p53 and USP7 – that work together to regulate cell growth. P53 is an important protein whose level in the cell determines whether cells will continue to proliferate or stop dividing and die. USP7 is a protein that binds to p53 and makes it stable. Under those conditions, cells stop growing and die, which is a natural state of cell regulation. Once EBNA1 is introduced to cells, however, this protein interferes with natural cell regulation by binding to USP7 and preventing its interaction with the p53 protein.

"Normally, p53 levels will increase in response to certain problems in the cell such as damaged DNA and this stops the cell from proliferating. Through binding USP7, EBNA1 keeps the p53 levels low so cells will continue to divide when they shouldn’t, which means they’re now more likely to develop into cancer," Frappier says.

"All viruses known to be able to cause cancer, like the human papillomavirus that causes cervical cancer for example, have been shown to work through this p53 protein, but up until now, no one’s ever found any regulation of p53 that’s associated with the Epstein-Barr virus. That was surprising because all other viruses that stimulate cell proliferation do it through p53. The question was why this one didn’t. What our research shows is that EBNA1 does actually impact on the p53 protein; it just does it in a different way than other viruses do."

Frappier, a Canada Research Chair in Molecular Virology, also conducted this research with Professor Aled Edwards, also of medical genetics and microbiology at U of T, and Professor Cheryl Arrowsmith, of medical biophysics at U of T and the Ontario Cancer Institute. Both Edwards and Arrowsmith are also from U of T’s Banting and Best Department of Medical Research and the Structural Genomics Consortium.

The researchers tested the effects of EBNA1 on human cells grown in culture. Frappier says the paper provides a structural explanation of this protein complex so scientists can see in molecular detail how the EBNA1 protein binds to USP7 and the resulting impact on cell growth. Once that level of detail is achieved, she says scientists can then design specific mutations in these proteins to see what happens to cells when the proteins don’t interact with one another. A better understanding of these molecular mechanisms will hopefully lead scientists and researchers to developing better methods of combating viruses like these which cause disease, says Frappier.

Lori Frappier | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht ADP-ribosylation on the right track
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

European particle-accelerator community publishes the first industry compendium

26.04.2018 | Physics and Astronomy

Multifunctional bacterial microswimmer able to deliver cargo and destroy itself

26.04.2018 | Life Sciences

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>