Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural tumor suppressor in body discovered by UCSD medical researchers

01.04.2005


A natural tumor suppressor that could potentially be turned on in certain cancer cells to prevent the formation of tumors has been discovered by researchers at the University of California, San Diego (UCSD) School of Medicine.


Akt/protein kinase B controls the balance between cell survival and cell death. The activated form of this kinase tips the balance towards cell proliferation and survival, whereas the inactive form tips the balance towards programmed cell death, apoptosis. Akt can be inactivated by two mechanisms: the tumor suppressor PTEN pre-empts activation by removing the activating signals, and the tumor suppressor PHLPP terminates activation by directly turning off a key phosphorylation switch on Akt.



Located on chromosome 18 and called PH domain Leucine-rich repeat Protein Phosphatase (PHLPP, pronounced "flip"), the tumor suppressor is described in the April 1, 2005 issue of the journal Molecular Cell. The scientists demonstrated that PHLPP deletes a phosphate molecule, causing termination of cell-growth signaling by a protein called Akt that controls the balance between cell growth leading to cancer and cell death that prevents tumor formation.

A drug that turns on PHLPP, so that it suppresses cell growth caused by Akt, could be a potential cancer therapy," said the study’s senior author, Alexandra C. Newton, Ph.D., UCSD professor of pharmacology. "Currently there are no compounds identified to directly stop Akt from causing cancer growth, once Akt signaling has been initiated."


Scientists have known that Akt is critical in regulating cell growth and death, and that it is linked to some of the most common human cancers. Although one group of scientists discovered a molecule called PTEN*, which prevents activation of Akt, no one to date had determined how to directly turn off Akt once it has been activated.

Since the Akt molecule is locked in the "on" position when it has phosphate on it, the UCSD team reasoned that there must be another molecule that will strip off the phosphate and lock Akt in the "off" position. The scientists conducted a database search of the human genome for a phosphatase, which is an enzyme that acts as a catalyst in regulating cellular processes by removing phosphate molecules. Based on the chemical components of Akt, they specifically looked for a phosphatase linked to the PH domain, a protein module found in a wide variety of chemical signaling proteins in organisms ranging from yeast to humans.

Once they found PHLPP, which they discovered was expressed throughout the body, the scientists used biochemical and cellular studies in human and other mammalian tissue to determine that PHLPP levels are markedly reduced in several colon cancer and gliobastoma human cell lines that had elevated Akt phosphorylation. Reintroduction of PHLPP into the cell lines caused a dramatic suppression of tumor growth. With additional laboratory tests, the team found that PHLPP stops tumor growth by deleting a specific phosphate molecule at a position called Ser473 on Akt.

The scientists noted that PHLPP’s role as a tumor suppressor would apply to all cancers where Akt is elevated, "which is a large number of cancers," Newton said.

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>