Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural tumor suppressor in body discovered by UCSD medical researchers

01.04.2005


A natural tumor suppressor that could potentially be turned on in certain cancer cells to prevent the formation of tumors has been discovered by researchers at the University of California, San Diego (UCSD) School of Medicine.


Akt/protein kinase B controls the balance between cell survival and cell death. The activated form of this kinase tips the balance towards cell proliferation and survival, whereas the inactive form tips the balance towards programmed cell death, apoptosis. Akt can be inactivated by two mechanisms: the tumor suppressor PTEN pre-empts activation by removing the activating signals, and the tumor suppressor PHLPP terminates activation by directly turning off a key phosphorylation switch on Akt.



Located on chromosome 18 and called PH domain Leucine-rich repeat Protein Phosphatase (PHLPP, pronounced "flip"), the tumor suppressor is described in the April 1, 2005 issue of the journal Molecular Cell. The scientists demonstrated that PHLPP deletes a phosphate molecule, causing termination of cell-growth signaling by a protein called Akt that controls the balance between cell growth leading to cancer and cell death that prevents tumor formation.

A drug that turns on PHLPP, so that it suppresses cell growth caused by Akt, could be a potential cancer therapy," said the study’s senior author, Alexandra C. Newton, Ph.D., UCSD professor of pharmacology. "Currently there are no compounds identified to directly stop Akt from causing cancer growth, once Akt signaling has been initiated."


Scientists have known that Akt is critical in regulating cell growth and death, and that it is linked to some of the most common human cancers. Although one group of scientists discovered a molecule called PTEN*, which prevents activation of Akt, no one to date had determined how to directly turn off Akt once it has been activated.

Since the Akt molecule is locked in the "on" position when it has phosphate on it, the UCSD team reasoned that there must be another molecule that will strip off the phosphate and lock Akt in the "off" position. The scientists conducted a database search of the human genome for a phosphatase, which is an enzyme that acts as a catalyst in regulating cellular processes by removing phosphate molecules. Based on the chemical components of Akt, they specifically looked for a phosphatase linked to the PH domain, a protein module found in a wide variety of chemical signaling proteins in organisms ranging from yeast to humans.

Once they found PHLPP, which they discovered was expressed throughout the body, the scientists used biochemical and cellular studies in human and other mammalian tissue to determine that PHLPP levels are markedly reduced in several colon cancer and gliobastoma human cell lines that had elevated Akt phosphorylation. Reintroduction of PHLPP into the cell lines caused a dramatic suppression of tumor growth. With additional laboratory tests, the team found that PHLPP stops tumor growth by deleting a specific phosphate molecule at a position called Ser473 on Akt.

The scientists noted that PHLPP’s role as a tumor suppressor would apply to all cancers where Akt is elevated, "which is a large number of cancers," Newton said.

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>