Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Balancing act at chromosome ends

01.04.2005


Scientists identify novel regulator of telomere homeostasis



Each of our 46 chromosomes is capped by a telomere – a long stretch of repeated DNA (TTAGG). Telomeres play a key protective function in our cells, and now Dr. In Kwon Chung and colleagues at Yonsei University (Seoul, Korea) and the University of Central Florida reveal a novel mechanism to modulate telomere length. Their work will be published in the April 1st issue of Genes & Development.

With each round of cell division, telomeres are progressively shortened. In fact, when telomeres reach a "critical length" the cell can no longer multiply. This has lead many scientists to conclude that the erosion of telomeres is a key feature of the aging process, while the aberrant addition to telomere ends (and increased proliferative capacity that this endows) is an integral part of cancer progression.


The mechanisms by which a cell regulates activity at its telomeres (be it positive or negative), is an actively investigated area, with direct implications for understanding aging and cancer.

Telomeres are elongated by an enzyme called Telomerase (hTERT). Telomerase is generally only active in fetal, germ, and cancer cells; it is normally repressed in most somatic (body) cells. This new work by Dr. Chung and colleagues shows how cells keep telomerase activity in check, by identifying a novel protein that tags its key partner for degradation.

Hsp90 is an abundant cellular protein that specifically interacts with hTERT to promote telomere formation. The Hsp90 protein is increased in several tumors and may increase the addition of telomere repeats several-fold. Chung’s group has now identified a second protein, called MKRN1 that acts on hTERT to promote its degradation. MKRN1 belongs to a class of proteins called ubiquitin ligases that catalyze the addition of a small protein, called ubiquitin, to mark hTERT for destruction by cellular degradation machinery.

Increasing the amount of MKRN1 in cells promotes the degradation of hTERT and leads to a decreased telomerase activity. This degradation is even more pronounced in cells that are treated with the drug geldanamycin, which is a specific antagonist of Hsp90. Consequently, this causes the shortening of telomere lengths. Using biochemical assays, it was demonstrated that MKRN1 directly interacts with hTERT to promote the addition of the ubiquitin moieties.

These results indicate that two opposing forces in human cells influence basal levels of active hTERT. The first is an interaction with Hsp90 that promotes this activity and the other is protein degradation, mediated by MKRN1 and the balance of these two maintains cellular telomerase levels. The identification of MKRN1 as a negative regulator of telomere lengths is an important finding in elucidating how cells may achieve immortality to lead to cancers.

Further studies will be important to shed light on how MKRN1 may be used as a therapeutic target for checking the uncontrolled division of tumor cells. Dr. Chung is confident that "MKRN1 plays an important role in modulating telomere homeostasis through dynamic control of hTERT protein stability and could represent a novel target for anti-cancer drug development."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>