Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Balancing act at chromosome ends


Scientists identify novel regulator of telomere homeostasis

Each of our 46 chromosomes is capped by a telomere – a long stretch of repeated DNA (TTAGG). Telomeres play a key protective function in our cells, and now Dr. In Kwon Chung and colleagues at Yonsei University (Seoul, Korea) and the University of Central Florida reveal a novel mechanism to modulate telomere length. Their work will be published in the April 1st issue of Genes & Development.

With each round of cell division, telomeres are progressively shortened. In fact, when telomeres reach a "critical length" the cell can no longer multiply. This has lead many scientists to conclude that the erosion of telomeres is a key feature of the aging process, while the aberrant addition to telomere ends (and increased proliferative capacity that this endows) is an integral part of cancer progression.

The mechanisms by which a cell regulates activity at its telomeres (be it positive or negative), is an actively investigated area, with direct implications for understanding aging and cancer.

Telomeres are elongated by an enzyme called Telomerase (hTERT). Telomerase is generally only active in fetal, germ, and cancer cells; it is normally repressed in most somatic (body) cells. This new work by Dr. Chung and colleagues shows how cells keep telomerase activity in check, by identifying a novel protein that tags its key partner for degradation.

Hsp90 is an abundant cellular protein that specifically interacts with hTERT to promote telomere formation. The Hsp90 protein is increased in several tumors and may increase the addition of telomere repeats several-fold. Chung’s group has now identified a second protein, called MKRN1 that acts on hTERT to promote its degradation. MKRN1 belongs to a class of proteins called ubiquitin ligases that catalyze the addition of a small protein, called ubiquitin, to mark hTERT for destruction by cellular degradation machinery.

Increasing the amount of MKRN1 in cells promotes the degradation of hTERT and leads to a decreased telomerase activity. This degradation is even more pronounced in cells that are treated with the drug geldanamycin, which is a specific antagonist of Hsp90. Consequently, this causes the shortening of telomere lengths. Using biochemical assays, it was demonstrated that MKRN1 directly interacts with hTERT to promote the addition of the ubiquitin moieties.

These results indicate that two opposing forces in human cells influence basal levels of active hTERT. The first is an interaction with Hsp90 that promotes this activity and the other is protein degradation, mediated by MKRN1 and the balance of these two maintains cellular telomerase levels. The identification of MKRN1 as a negative regulator of telomere lengths is an important finding in elucidating how cells may achieve immortality to lead to cancers.

Further studies will be important to shed light on how MKRN1 may be used as a therapeutic target for checking the uncontrolled division of tumor cells. Dr. Chung is confident that "MKRN1 plays an important role in modulating telomere homeostasis through dynamic control of hTERT protein stability and could represent a novel target for anti-cancer drug development."

Heather Cosel | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>