Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Balancing act at chromosome ends

01.04.2005


Scientists identify novel regulator of telomere homeostasis



Each of our 46 chromosomes is capped by a telomere – a long stretch of repeated DNA (TTAGG). Telomeres play a key protective function in our cells, and now Dr. In Kwon Chung and colleagues at Yonsei University (Seoul, Korea) and the University of Central Florida reveal a novel mechanism to modulate telomere length. Their work will be published in the April 1st issue of Genes & Development.

With each round of cell division, telomeres are progressively shortened. In fact, when telomeres reach a "critical length" the cell can no longer multiply. This has lead many scientists to conclude that the erosion of telomeres is a key feature of the aging process, while the aberrant addition to telomere ends (and increased proliferative capacity that this endows) is an integral part of cancer progression.


The mechanisms by which a cell regulates activity at its telomeres (be it positive or negative), is an actively investigated area, with direct implications for understanding aging and cancer.

Telomeres are elongated by an enzyme called Telomerase (hTERT). Telomerase is generally only active in fetal, germ, and cancer cells; it is normally repressed in most somatic (body) cells. This new work by Dr. Chung and colleagues shows how cells keep telomerase activity in check, by identifying a novel protein that tags its key partner for degradation.

Hsp90 is an abundant cellular protein that specifically interacts with hTERT to promote telomere formation. The Hsp90 protein is increased in several tumors and may increase the addition of telomere repeats several-fold. Chung’s group has now identified a second protein, called MKRN1 that acts on hTERT to promote its degradation. MKRN1 belongs to a class of proteins called ubiquitin ligases that catalyze the addition of a small protein, called ubiquitin, to mark hTERT for destruction by cellular degradation machinery.

Increasing the amount of MKRN1 in cells promotes the degradation of hTERT and leads to a decreased telomerase activity. This degradation is even more pronounced in cells that are treated with the drug geldanamycin, which is a specific antagonist of Hsp90. Consequently, this causes the shortening of telomere lengths. Using biochemical assays, it was demonstrated that MKRN1 directly interacts with hTERT to promote the addition of the ubiquitin moieties.

These results indicate that two opposing forces in human cells influence basal levels of active hTERT. The first is an interaction with Hsp90 that promotes this activity and the other is protein degradation, mediated by MKRN1 and the balance of these two maintains cellular telomerase levels. The identification of MKRN1 as a negative regulator of telomere lengths is an important finding in elucidating how cells may achieve immortality to lead to cancers.

Further studies will be important to shed light on how MKRN1 may be used as a therapeutic target for checking the uncontrolled division of tumor cells. Dr. Chung is confident that "MKRN1 plays an important role in modulating telomere homeostasis through dynamic control of hTERT protein stability and could represent a novel target for anti-cancer drug development."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>