Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model reveals potential way to reduce cardiac deaths in kidney patients

31.03.2005


Scientists have identified an important link between kidney damage and cardiac problems, creating new possibilities for treating the primary cause of death in kidney disease patients.



Researchers tracked a chain reaction that leads from kidney damage to weakening of the skeleton to increased phosphorous in the blood. They showed that higher phosphorous levels were directly linked to vascular calcification, a stiffening of the smooth muscle cells that line blood vessels. Vascular calcification leads to enlargement of one of the heart’s four chambers, increased risk of congestive heart failure, heart attack and several other cardiac problems.

Mice treated with an experimental medication that alleviates the skeletal weakening brought on by kidney damage had normal phosphorous levels and decreased signs of vascular calcification.


"We already have treatments available that can control phosphorous levels in the blood, and those should be very helpful for kidney patients," says senior investigator Keith A. Hruska, M.D., the Ira M. Lang Professor of Nephrology and professor of pediatrics and of cell biology and physiology at Washington University School of Medicine in St. Louis. "The drug we used in the mice and other similar agents can treat both the phosphorous levels and skeletal weakening, and those drugs are just entering initial clinical trials."

The study will appear in the April issue of the Journal of the American Society of Nephrology.

Hruska, who is director of nephrology at St. Louis Children’s Hospital, has long been interested in the connections between kidney damage and bone weakening. He and other researchers have uncovered a complex network of links between the skeleton and the kidney. Hormones made in the kidney regulate activity in the skeleton and vice-versa.

Last year, Hruska showed that injections of bone morphogenetic protein-7 (BMP-7) could prevent bone weakening in mice whose kidneys had been damaged or removed.

For the new study, researchers worked with a mouse model of metabolic syndrome, a condition common among patients with chronic kidney disease that includes symptoms such as obesity, high blood pressure and insulin resistance. The condition, which is rapidly increasing in both adults and children, is also associated with higher risks of diabetes and heart disease.

The mice develop metabolic syndrome as a result of both a genetic modification and a high-fat, high-cholesterol diet. To simulate chronic kidney disease, scientists damaged or removed part of the kidney. This led to a shutdown of cells that regularly dismantle and rebuild bones, causing vascular calcification.

The body normally takes minerals like calcium and phosphorous circulating in the bloodstream and deposits them in the bones during bone reconstruction. With those processes shut down, scientists theorized, the bloodstream levels of minerals increase, raising pressure to deposit them elsewhere.

Hruska and his colleagues first showed that injection of BMP-7, previously shown to stop the bone disorder, also stopped vascular calcification. In another group of experimental mice, injections of a substance that binds to compounds with phosphorous but has no effect on the skeleton also stopped vascular calcification, proving that phosphorous was the key link.

"Serum phosphorous is a direct stimulus to the smooth muscle cells that line blood vessels, causing them to take on characteristics very similar to osteoblasts, the cells that form bone," Hruska explains.

The changed smooth muscle cells can deposit minerals outside their membranes, dramatically decreasing the flexibility of blood vessels and increasing the work the heart has to do to create a pulse.

"Vascular stiffness happens to patients with end-stage kidney failure when they go on dialysis, and it leads to many dangerous cardiovascular complications," Hruska says. "This study shows us that by treating the skeleton or otherwise decreasing phosphorous levels, we have the potential to produce a decrease in vascular calcification and marked improvements in cardiovascular outcome."

To follow up, Hruska plans a more direct study of the effects of BMP-7 on vascular calcification and further investigation of the skeleton-kidney links that lead to bone weakening in patients with kidney damage.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>