Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouse model reveals potential way to reduce cardiac deaths in kidney patients


Scientists have identified an important link between kidney damage and cardiac problems, creating new possibilities for treating the primary cause of death in kidney disease patients.

Researchers tracked a chain reaction that leads from kidney damage to weakening of the skeleton to increased phosphorous in the blood. They showed that higher phosphorous levels were directly linked to vascular calcification, a stiffening of the smooth muscle cells that line blood vessels. Vascular calcification leads to enlargement of one of the heart’s four chambers, increased risk of congestive heart failure, heart attack and several other cardiac problems.

Mice treated with an experimental medication that alleviates the skeletal weakening brought on by kidney damage had normal phosphorous levels and decreased signs of vascular calcification.

"We already have treatments available that can control phosphorous levels in the blood, and those should be very helpful for kidney patients," says senior investigator Keith A. Hruska, M.D., the Ira M. Lang Professor of Nephrology and professor of pediatrics and of cell biology and physiology at Washington University School of Medicine in St. Louis. "The drug we used in the mice and other similar agents can treat both the phosphorous levels and skeletal weakening, and those drugs are just entering initial clinical trials."

The study will appear in the April issue of the Journal of the American Society of Nephrology.

Hruska, who is director of nephrology at St. Louis Children’s Hospital, has long been interested in the connections between kidney damage and bone weakening. He and other researchers have uncovered a complex network of links between the skeleton and the kidney. Hormones made in the kidney regulate activity in the skeleton and vice-versa.

Last year, Hruska showed that injections of bone morphogenetic protein-7 (BMP-7) could prevent bone weakening in mice whose kidneys had been damaged or removed.

For the new study, researchers worked with a mouse model of metabolic syndrome, a condition common among patients with chronic kidney disease that includes symptoms such as obesity, high blood pressure and insulin resistance. The condition, which is rapidly increasing in both adults and children, is also associated with higher risks of diabetes and heart disease.

The mice develop metabolic syndrome as a result of both a genetic modification and a high-fat, high-cholesterol diet. To simulate chronic kidney disease, scientists damaged or removed part of the kidney. This led to a shutdown of cells that regularly dismantle and rebuild bones, causing vascular calcification.

The body normally takes minerals like calcium and phosphorous circulating in the bloodstream and deposits them in the bones during bone reconstruction. With those processes shut down, scientists theorized, the bloodstream levels of minerals increase, raising pressure to deposit them elsewhere.

Hruska and his colleagues first showed that injection of BMP-7, previously shown to stop the bone disorder, also stopped vascular calcification. In another group of experimental mice, injections of a substance that binds to compounds with phosphorous but has no effect on the skeleton also stopped vascular calcification, proving that phosphorous was the key link.

"Serum phosphorous is a direct stimulus to the smooth muscle cells that line blood vessels, causing them to take on characteristics very similar to osteoblasts, the cells that form bone," Hruska explains.

The changed smooth muscle cells can deposit minerals outside their membranes, dramatically decreasing the flexibility of blood vessels and increasing the work the heart has to do to create a pulse.

"Vascular stiffness happens to patients with end-stage kidney failure when they go on dialysis, and it leads to many dangerous cardiovascular complications," Hruska says. "This study shows us that by treating the skeleton or otherwise decreasing phosphorous levels, we have the potential to produce a decrease in vascular calcification and marked improvements in cardiovascular outcome."

To follow up, Hruska plans a more direct study of the effects of BMP-7 on vascular calcification and further investigation of the skeleton-kidney links that lead to bone weakening in patients with kidney damage.

Michael C. Purdy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>