Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Components in grapes inhibit enzyme key to proliferation of cancer cells

31.03.2005


Components in grapes, including some newly identified ones, work together to dramatically inhibit an enzyme crucial to the proliferation of cancer cells, say scientists at the University of Illinois at Urbana-Champaign.



The work -- done using advanced molecular tools with grape-cell cultures and the target enzyme for new anti-cancer strategies -- helps to identify which flavonoids in grapes and red wine are most responsible for anti-cancer qualities, said Mary Ann Lila, a professor in the department of natural resources and environmental sciences.

Flavonoids are a group of organic compounds that include numerous water-soluble plant pigments responsible for colors. They are more abundant in red than in white grapes.


The Journal of Agricultural and Food Chemistry has posted the Illinois study online ahead of regular publication. The study details a dozen newly discovered constituents in grape-cell culture extracts and how some of them work synergistically against an enzyme known as human DNA topoisomerase II. The enzyme is necessary for the spread of cancer and commonly used in cancer research to screen plant chemicals.

"The findings add to the argument for eating whole foods," said Elvira Gonzalez de Mejia, a professor in the department of food science and human nutrition. "It’s very clear that the synergy is critical. When a cell becomes malignant that enzyme is expressed 300 times more than in a normal cell. If we can find a compound or mixture of compounds that can reduce the activity of that enzyme, the cancerous cells will die."

The synergistic activity involves specific phytochemicals from the proanthocyanidin and anthocyanin classes of the varied flavonoid family. They worked more effectively against the enzyme than do the previously identified flavonoids quercetin and resveratrol. Alone, the individual compenents had less effect on the enzyme.

"We definitely had very potent activity against the particular antibody system we were using, which was that of the critical proliferation stage of carcinogenesis," Lila said. "In our subsequent studies now under way in animal models, we are getting direct evidence that these components in grapes work synergistically in fighting cancer. They have to work together to obtain the potency that works."

The researchers are tracking where specially radiolabeled flavonoids congregate in rats, in a project funded by the U.S. Department of Agriculture. "We are finding that these flavonoids are very bioavailable," de Mejia said. "By eating the fruit, we know that the bioactive component involved goes into your bloodstream and relocates to other regions. Before now, we didn’t really know that."

Lila, de Mejia and co-author Jeong-Youn Jo, a doctoral student in Lila’s lab, produced the grape-cell cultures they tested from red-grape plants specifically bred for their pigmentation and provided by Cornell University researchers.

Using vegetative samples of the plants, rather than the fruit itself, the Illinois team was able to quickly produce the whole range of grape flavonoids in greater quantity. The researchers then extracted individual flavonoids intact. Their analytic work involved the use of reversed phase high-performance liquid chromatography and LC-electrospray ionization (ESI)/mass spectrometry to profile the most bioactive components.

Eventually, Lila said, researchers may be able to determine reasonable dosages for therapeutic consumption of flavonoid-rich grapes. Supplements containing specific flavonoids probably won’t result in desired benefits, de Mejia said, because complementary components required for synergistic activity may be missing.

"Some of the compounds we identified have not been reported in cell culture and grapes," de Mejia said. "Some have high inhibitory activity in the promotion and progression stages of cancer and have a high probability to work against the disease."

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>