Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather forecasts may be predictors for prevalence of West Nile virus

31.03.2005


Weather forecasts could become barometers for predicting the potential threat of West Nile virus to humans and wildlife, according to scientists at two state agencies based at the University of Illinois at Urbana-Champaign.

Researchers at the Illinois State Water Survey (ISWS) and the Illinois Natural History Survey (INHS) report a reliable link between weather conditions and an abundance of two mosquito species linked to outbreaks in humans and wildlife, especially birds.

The West Nile virus first appeared in Illinois in 2001. A major statewide outbreak occurred in 2002, with 66 deaths among the 884 people showing clinical signs of infection after being bitten by mosquitoes carrying the virus. Although the number of cases in humans declined in 2003 and 2004 (112 human cases and five deaths), transmission between mosquitoes and birds continues throughout the state at surprisingly high levels.



Two mosquito species -- Culex restuans, the white-spotted mosquito, and Culex pipiens, the northern house mosquito -- are believed to maintain the natural transmission cycle between birds and mosquitoes. The population of northern house mosquitoes, the primary suspect for transmission to humans, is low in spring but grows to become the dominant species later in summer, especially in urban areas.

The northern house mosquito becomes the main species in early August, on average, said INHS entomologist Robert Novak, who also is an adjunct professor of veterinary pathobiology in the College of Veterinary Medicine. He has been collecting data on summer changes in mosquito species in the Champaign-Urbana area since 1988. Because that time period varies each year, ISWS atmospheric scientist Kenneth Kunkel, along with Novak and INHS mosquito ecologists Richard Lampman and Weidong Gu, examined whether changes in vector abundance may be related to weather conditions.

The northern house mosquito became dominant earlier in the summer in years when temperatures exceeded 81 degrees Fahrenheit more frequently than normal, they discovered. Likewise, the dominance of the mosquito was delayed until late summer in years when temperatures exceeded 81 degrees less frequently than normal. That very simple relationship can be used to predict when the northern house mosquito will emerge as the dominant mosquito species, the scientists say.

The researchers also found that a rise of West Nile infection in mosquitoes parallels the rise in species abundance. The peak infection rate in mosquitoes occurs about two to three weeks after the northern house mosquito becomes the dominant species. This peak in infection obviously represents the period of greatest risk of transmission to incidental hosts such as horses, humans and other wildlife, they concluded. A review of the weather and mosquito-infection-rate data shows that 2002, the major outbreak year, coincided with a warmer spring and summer and earlier abundance of Cx. pipiens than the two subsequent years.

Other weather factors, such as precipitation, also may play a role in the transmission of West Nile virus. The scientists are continuing their research to better understand the role of weather and climate on the transmission and of other vector-borne pathogens, such as the St. Louis encephalitis virus, also carried by both Culex species.

The Midwestern Regional Climate Center, housed at the ISWS, monitors climate conditions in the Midwest. That data, with Novak’s data, will be tested this summer to assess the forecasting capability of a prototype model that can provide public health wildlife professionals with warning of periods when West Nile virus is most likely to pose a threat.

Eva Kingston | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>