Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Color-blind’ method opens new doors in DNA sequencing

30.03.2005


Technology could lower costs for high-throughput genetic scans



A "color-blind" method of fluorescence detection developed by researchers at Baylor College of Medicine (BCM) and Rice University could open new doors that would take DNA sequencing to the patient’s bedside, the doctor’s office and even the scene of a crime or a battlefield.

"We could eventually do direct detection of a DNA sequence from native DNA" without manipulation now performed in the laboratory, said Dr. Michael L. Metzker, assistant professor in the BCM Human Genome Sequencing Center and adjunct assistant professor of chemistry at Rice. "We could make sequencing portable and do it faster."


The research appears this week in the journal Proceedings of the National Academy of Sciences. In the paper, Metzker, Rice University Professor Robert Curl and colleagues from BCM and Rice describe a new way of doing DNA sequencing that could be more accurate than current methods.

DNA in the nucleus of every human cell is made of long chains of building blocks called nucleotides. DNA is made up of just four types of nucleotides – referred to as A, C, G and T – and is organized in such a way that A binds T and G binds C, forming a double helical structure. Each person’s genome consists of a unique ordering of some 3 billion base pairs, and ’DNA sequencing’ refers to the process scientists use to read out the order of those nucleotides.

In sequencing, scientists first extract DNA from the nuclei of cells and through a painstaking series of bacterial cloning and/or polymerase chain reaction (PCR) steps, reduce its length to a manageable size of thousands of nucleotides. Using natural replicating enzymes, the DNA is tagged with four fluorescent dyes, each corresponding to a particular nucleotide. This tagging process, called Sanger sequencing, results in smaller DNA fragments, which are then separated base-by-base. Because the DNA fragments are tagged with dyes, they glow when they are struck by laser light to determine the order of one’s DNA sequence.

Most sequencing today is done with one laser and optics to separate the dyes into the four colors, blue, green, yellow, and red. A common problem with the technique is that the color of light emitted by the dyes is similar. Even with complex computer programs to assist in deciphering the signals, this "cross-talk" between the dyes results in subtle variations that can cause nucleotides to be miscalled.

The new method developed at BCM and Rice, called pulsed multiline excitation, uses four lasers, each matched to a particular dye. PME enables the researchers to take advantage of the entire visible spectrum, eliminating the problem of cross-talk between dyes, said Metzker.

Because there are four lasers, scientists can manipulate the system so that each dye gives the same intensity of fluorescent signal, eliminating the need for further software processing to yield readable sequence information.

"Genome sequencing, by its very nature, is a process that begs for precision, and the number of mistakes that can be tolerated is extremely low," said Curl, University Professor, the Kenneth S. Pitzer-Schlumberger Professor of Natural Sciences and professor of chemistry. "Our new method does away with identification problems altogether, because the imaging is very clean."

Metzker said, "We have built a highly sensitive instrument for the measuring of fluorescence, because PME gives brighter signals and collects more of that signal by eliminating the need for a prism to separate the light into colors."

Metzker is also seeking to develop a chip-based imager than could be used in his overall project on sequencing-by-synthesis (SBS), which is funded by the National Human Genome Research Institute. SBS could lead to the ability to sequence an individual’s own genome rapidly and inexpensively.

Metzker and the major developers of this technology filed a patent on PME in 2001, which has been exclusively licensed to LaserGen for commercial development.

Others who participated in the research include Carter Kittrell, Bruce R. Johnson, Freddy Nguyen, Daniel A. Heller, Matthew J. Allen, Robert R. MacGregor, C. Scott Berger, Lori A. Burns, and Britain Willingham, all of Rice, and Ernest K. Lewis, Wade C. Haaland, and Graham B. I. Scott, all of BCM.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>