Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the sea slug’s defense against lobsters, confusion is key

30.03.2005


Like many other marine creatures, Aplysia, a common sea slug, enlists chemical defenses against its predators, but the mechanisms by which such chemical attacks actually work against their intended targets are not well understood by researchers. New work has now shown that such chemical defenses can involve modes of trickery that had not previously been appreciated as components of chemical defense.



When attacked by predatory spiny lobsters, sea slugs (also known as sea hares) release an inky secretion, termed ink and opaline, from a pair of glands. The new findings show that Aplysia’s defensive secretion includes a variety of chemicals that together comprise a multi-pronged attack on the predator’s nervous system, resulting in the usurpation of its normal behavioral control system and a confused response that facilitates the slug’s ultimate escape.

The team of researchers conducting the study, Cynthia Kicklighter, Zeni Shabani, and Paul Johnson, led by Charles Derby of Georgia State University, discovered that in addition to containing unpalatable, aversive chemicals, Aplysia’s inky secretion contains large quantities of chemicals that are also found in the food of spiny lobsters and that indeed these chemicals serve to activate nervous-system pathways that control feeding behaviors of the lobster. The inky secretion also stimulates other behaviors in the lobster, including grooming and avoidance. Ironically, the slug’s ability to trick the lobster’s nervous system into activating feeding-associated behaviors succeeds, in combination with ink and opaline’s other effects, in distracting the lobster sufficiently to enable the slug’s successful evasion.


Because the set of behaviors stimulated by the slug’s secretions resemble activation of a feeding pathway, the researchers named this novel chemical defense "phagomimicry." The stickiness of the slug’s secretions appears to contribute to long-lasting effects on the target despite the aqueous environment, enhancing the effectiveness of the slug’s defense.

Cynthia E. Kicklighter, Shkelzen Shabani, Paul M. Johnson, and Charles D. Derby: "Sea Hares Use Novel Antipredatory Chemical Defenses"

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>