Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant hemoglobins: Oxygen handlers critical for nitrogen fixation

30.03.2005


Hemoglobins, key components of our blood, are ancient proteins with well-known roles in oxygen transport and respiration in animals. Hemoglobins are also present in plants and bacteria, but until now the physiological role of plant hemoglobins has been unclear. A group of researchers reveal this week that one such mysterious plant hemoglobin serves to assist in the fixation of nitrogen in the root nodules of legumes through a process that is conceptually not unlike that undertaken by mammalian hemoglobins in facilitating oxygen transport and exchange in the blood.



The most conspicuous plant hemoglobins are the symbiotic hemoglobins of legumes; these hemoglobins accumulate in root nodules and give these specialized organs their distinctive red color. Legume root nodules accommodate bacteria, called rhizobia, that reduce atmospheric nitrogen to ammonia, which is subsequently used by the plant for growth and colonization of nitrogen-poor soils. Symbiotic nitrogen fixation is important for sustainable agriculture and contributes millions of tons of reduced nitrogen to crops and pastures each year.

As reported this week, researchers led by Dr. Michael Udvardi at the Max Planck Institute of Molecular Plant Physiology have succeeded in eliminating the production of symbiotic hemoglobins in nodules of the model legume Lotus japonicus, enabling researchers to assess for the first time the role and importance of these proteins in plants. The results of the study indicate that symbiotic hemoglobins are important for oxygen transport and energy metabolism in plant root nodules. Furthermore, these proteins help to maintain free-oxygen concentrations in nodules at levels low enough to avoid damage of oxygen-sensitive nitrogenase, the bacterial enzyme complex responsible for symbiotic nitrogen fixation. Thus, plant hemoglobins fulfill roles analogous to those of animal hemoglobins, as well as novel roles that are apparently unique to symbiotic nitrogen fixation.


Thomas Ott, Joost van Dongen, Catrin Günther, Lene Krusell, Guilhem Desbrosses,1 Helene Vigeolas, Vivien Bock, Tomasz Czechowski, Peter Geigenberger, and Michael K. Udvardi: "Symbiotic Leghemoglobins Are Crucial for Nitrogen Fixation in Legume Root Nodules but Not for General Plant Growth and Development"

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>