Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant hemoglobins: Oxygen handlers critical for nitrogen fixation

30.03.2005


Hemoglobins, key components of our blood, are ancient proteins with well-known roles in oxygen transport and respiration in animals. Hemoglobins are also present in plants and bacteria, but until now the physiological role of plant hemoglobins has been unclear. A group of researchers reveal this week that one such mysterious plant hemoglobin serves to assist in the fixation of nitrogen in the root nodules of legumes through a process that is conceptually not unlike that undertaken by mammalian hemoglobins in facilitating oxygen transport and exchange in the blood.



The most conspicuous plant hemoglobins are the symbiotic hemoglobins of legumes; these hemoglobins accumulate in root nodules and give these specialized organs their distinctive red color. Legume root nodules accommodate bacteria, called rhizobia, that reduce atmospheric nitrogen to ammonia, which is subsequently used by the plant for growth and colonization of nitrogen-poor soils. Symbiotic nitrogen fixation is important for sustainable agriculture and contributes millions of tons of reduced nitrogen to crops and pastures each year.

As reported this week, researchers led by Dr. Michael Udvardi at the Max Planck Institute of Molecular Plant Physiology have succeeded in eliminating the production of symbiotic hemoglobins in nodules of the model legume Lotus japonicus, enabling researchers to assess for the first time the role and importance of these proteins in plants. The results of the study indicate that symbiotic hemoglobins are important for oxygen transport and energy metabolism in plant root nodules. Furthermore, these proteins help to maintain free-oxygen concentrations in nodules at levels low enough to avoid damage of oxygen-sensitive nitrogenase, the bacterial enzyme complex responsible for symbiotic nitrogen fixation. Thus, plant hemoglobins fulfill roles analogous to those of animal hemoglobins, as well as novel roles that are apparently unique to symbiotic nitrogen fixation.


Thomas Ott, Joost van Dongen, Catrin Günther, Lene Krusell, Guilhem Desbrosses,1 Helene Vigeolas, Vivien Bock, Tomasz Czechowski, Peter Geigenberger, and Michael K. Udvardi: "Symbiotic Leghemoglobins Are Crucial for Nitrogen Fixation in Legume Root Nodules but Not for General Plant Growth and Development"

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Viruses support photosynthesis in bacteria – an evolutionary advantage?
23.02.2017 | Technische Universität Kaiserslautern

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>