Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new color-coded test for protein folding

29.03.2005


Every protein--from albumin to testosterone--is folded into a unique, three-dimensional shape that allows it to function properly. Now Stanford University scientists have developed a simple test that instantly changes color when a protein molecule attached to a gold nanoparticle folds or unfolds. The new technique, which works on the same principle as ordinary pH tests that measure the acidity of water, is described in the March 2005 issue of the journal Chemistry and Biology.



"What we’ve developed is a simple and inexpensive sensor for determining when a protein changes its conformation," said study co-author Richard N. Zare, the Marguerite Blake Wilbur Professor in Natural Science in Stanford’s Department of Chemistry. According to Zare, the new sensor may eventually provide biomedical researchers a fast, affordable method for detecting antibodies and other disease-related proteins. Acid and base

In their experiment, Zare, postdoctoral fellow Soonwoo Chah and graduate student Matthew R. Hammond created a liquid solution containing nano-sized particles of gold saturated with a protein called cytochrome c. "We chose gold nanoparticles because they are simple to prepare, easy to control and cost effective," the authors wrote. "To the best of our knowledge, however, gold nanoparticles have not been previously used to investigate the folding and unfolding of proteins."


The initial batch of gold-cytochrome solution had a rosy red hue and a pH value of 10--about the same as an over-the-counter heartburn medication. But when drops of hydrochloric acid were added, the solution began to change color, turning purple when the pH reached 5.8 and light blue at pH 4, which is close to the acidity of wine. Lab analysis revealed that additional hydrochloric acid was causing the cytochrome c molecules to unfold. As a result, gold nanoparticles coated with cytochrome c began clumping together--a process that caused the solution to quickly change from red to blue as the acidity increased.

The researchers were surprised to discover that, when the pH was raised from 4 to 10, the blue solution turned reddish once again--a strong indication that some cytochrome c molecules had refolded into their original three-dimensional shape. In fact, the experiment showed that, when attached to gold film, cytochrome c can fold, unfold and refold countless times depending on the acidity of the solution, thus making it an ideal tool for detecting conformational changes in proteins.

"While we’re not ready to mass-produce this technology, we believe it will eventually be useful for testing other, more complicated proteins," Zare said, noting that a gold nanoparticle sensor could turn out to be a quick and inexpensive way for doctors to identify antibodies and other signs of infection in the blood stream. Over the next few months, he and his colleagues plan to re-do the experiment using other protein molecules.

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>