Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers maintain stem cells without contaminated animal feeder layers

29.03.2005


The growth and maintenance of human embryonic stem cells in the absence of contaminated animal products has been demonstrated by University of California, San Diego (UCSD) School of Medicine researchers in the Whittier Institute*, La Jolla, California.

Published in the April 2005 issue of the journal Stem Cells, the study shows that laboratory culture media enriched by a human protein called activin A are capable of maintaining human embryonic stem cells in a continuous undifferentiated state, ready for research. Undifferentiation means the stem cells have not begun the developmental path to become specific human tissue or organs. "Our findings provide a new way to generate human stem cell lines without contamination by animal cells or products," said the study’s senior author, Alberto Hayek, M.D., UCSD professor of pediatrics and director of the Islet Research Laboratory at the Whittier Institute.
Currently, stem cell lines derived from human embryos are grown and nourished in petri dish material called feeder layers that are made with animal connective tissue, primarily mouse and calf. A recent study in Nature Medicine** by UCSD’s Ajit Varki, M.D. showed that human embryonic stem cells grown in this animal-derived tissue become contaminated with a non-human molecule called Neu5Gc. If these stem cells were to be transplanted into people, they would provoke an immune system attack eliminating their therapeutic value.


While several laboratories have attempted to grow stem cells in alternative cultures, problems have remained. In some cases, human feeder layers were developed but this added another measure of complexity to the culture system, Hayek noted. In recent studies in Wisconsin and Massachusetts, new feeder layers were developed, but they did not entirely eliminate the use of animal products. In the Hayek study, the animal-derived feeder layers are completely eliminated. However, the petri dishes themselves are coated with laminin (an animal-derived product), and the UCSD team is continuing studies to determine if contamination occurs from this source.

For a proposed animal-free medium, the UCSD study takes advantage of a previously unidentified soluble factor this is secreted from mouse feeder layers to maintain stem cells’ undifferentiated state and pluripotency, the ability to become all tissue types in the body. The scientists knew that a cocktail of various growth factors and chemicals had previously been shown to modulate cellular growth and differentiation in human pancreatic cells. Human embryonic stem cells cultured for several weeks under these conditions showed no change in cell form and structure. The team then eliminated each factor and pluripotency was assessed. At first, the results were narrowed to three molecules, with activin A, a protein that participates in cellular growth and differentiation, as well as hormone secretion, finally shown in additional testing to maintain the undifferentiated state.

The study’s first author, Gillian M. Beattie, M.S., UCSD Department of Pediatrics and the Whittier Institute, said that "it will be rather simple now to develop a specific defined medium that allows for the maintenance of the human stem cells and enhances research without the problem of contaminating animal cells and their products."

In a summary to their paper, the researchers noted that "the identification of activin A as a key factor in mediating these cellular events will help to unravel the biochemical pathways responsible for ’stemness’. An increased efficiency in the generation and culture of human stem cells for potential clinical applications is timely, given the recent report of 17 newly derived stem cell lines available for non-federal research. The findings here may facilitate the derivation of new human embryonic stem cell lines without the use of animal or human feeder layers."

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>