Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers maintain stem cells without contaminated animal feeder layers

29.03.2005


The growth and maintenance of human embryonic stem cells in the absence of contaminated animal products has been demonstrated by University of California, San Diego (UCSD) School of Medicine researchers in the Whittier Institute*, La Jolla, California.

Published in the April 2005 issue of the journal Stem Cells, the study shows that laboratory culture media enriched by a human protein called activin A are capable of maintaining human embryonic stem cells in a continuous undifferentiated state, ready for research. Undifferentiation means the stem cells have not begun the developmental path to become specific human tissue or organs. "Our findings provide a new way to generate human stem cell lines without contamination by animal cells or products," said the study’s senior author, Alberto Hayek, M.D., UCSD professor of pediatrics and director of the Islet Research Laboratory at the Whittier Institute.
Currently, stem cell lines derived from human embryos are grown and nourished in petri dish material called feeder layers that are made with animal connective tissue, primarily mouse and calf. A recent study in Nature Medicine** by UCSD’s Ajit Varki, M.D. showed that human embryonic stem cells grown in this animal-derived tissue become contaminated with a non-human molecule called Neu5Gc. If these stem cells were to be transplanted into people, they would provoke an immune system attack eliminating their therapeutic value.


While several laboratories have attempted to grow stem cells in alternative cultures, problems have remained. In some cases, human feeder layers were developed but this added another measure of complexity to the culture system, Hayek noted. In recent studies in Wisconsin and Massachusetts, new feeder layers were developed, but they did not entirely eliminate the use of animal products. In the Hayek study, the animal-derived feeder layers are completely eliminated. However, the petri dishes themselves are coated with laminin (an animal-derived product), and the UCSD team is continuing studies to determine if contamination occurs from this source.

For a proposed animal-free medium, the UCSD study takes advantage of a previously unidentified soluble factor this is secreted from mouse feeder layers to maintain stem cells’ undifferentiated state and pluripotency, the ability to become all tissue types in the body. The scientists knew that a cocktail of various growth factors and chemicals had previously been shown to modulate cellular growth and differentiation in human pancreatic cells. Human embryonic stem cells cultured for several weeks under these conditions showed no change in cell form and structure. The team then eliminated each factor and pluripotency was assessed. At first, the results were narrowed to three molecules, with activin A, a protein that participates in cellular growth and differentiation, as well as hormone secretion, finally shown in additional testing to maintain the undifferentiated state.

The study’s first author, Gillian M. Beattie, M.S., UCSD Department of Pediatrics and the Whittier Institute, said that "it will be rather simple now to develop a specific defined medium that allows for the maintenance of the human stem cells and enhances research without the problem of contaminating animal cells and their products."

In a summary to their paper, the researchers noted that "the identification of activin A as a key factor in mediating these cellular events will help to unravel the biochemical pathways responsible for ’stemness’. An increased efficiency in the generation and culture of human stem cells for potential clinical applications is timely, given the recent report of 17 newly derived stem cell lines available for non-federal research. The findings here may facilitate the derivation of new human embryonic stem cell lines without the use of animal or human feeder layers."

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>