Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers call for expanding the repertoire in studying birdsong

29.03.2005


A pair of leading scientists who study songbirds as models for understanding the human brain and how humans acquire language say it’s time for the burgeoning field to begin singing a different tune and study a wider variety of species.



Michael Beecher and Eliot Brenowitz, University of Washington professors of psychology and biology, say that while a great deal of knowledge has been gleaned by studying songbirds over the past three decades, a narrow focus on just a few species only provides a fragmentary picture of how the brains of nearly 4,000 songbird species function.

Writing in companion papers in the March issues of the journals Trends in Neurosciences and Trends in Ecology and Evolution, the two UW scientists argue that there is much greater diversity in how and when birds learn to sing than is generally recognized. They say the value of the birdsong system as a model for studying how the brain controls the learning of language would be greatly enhanced by taking into account the diversity seen among different bird species.


"We are interested in comparative approaches," said Beecher, who is an animal behaviorist. "There are many patterns of learning, but most studies are on zebra finches or white-crowned sparrows, in which song learning is restricted to the first year of life. People are not taking advantage of the wide spectrum of bird species. There probably are more species learning songs into their third and fourth years than those who only learn in the first few months or first year."

"One of the great things about songbirds is there is great variety in the manner in which different species learn to sing," said Brenowitz, a neurobiologist. "They are great models, but we should take advantage of the diversity of what they have to offer."

Brenowitz noted that the often-studied zebra finch is sexually mature in just 90 days.

"They learn song quickly so it is hard to say this change in the brain is related to this aspect of song development. We can understand these kinds of things better in other species that mature more slowly. We can learn, for example, how the brain controls learning new songs as an adult, or to mimic the songs of other species. With different species, you get to ask all kinds of questions and get all kinds of answers that you can’t with any single species."

The researchers said scientists need to be cautious about regarding the behavior of one or two species as typical of all songbirds in general.

"Settling on one species is risky," said Brenowitz, "because it depends on which species you began with. If you started with the starling, which learns throughout its life, rather than the zebra finch, our view of the basic or norm for birds would be very different."

The UW scientists said that previous research tended to label songbirds as either closed-end or open-ended learners, depending on when they learned their song repertoires. The assumption has been that most species, with a few exceptions, learned their songs early in life. More recent research, Beecher and Brenowitz said, has shown that there is a continuum of learning, with some species acquiring a fixed repertoire early in life, others whose song changes over the course of a year, others that add new songs from year to year and still others who learn an entirely new group of songs each year.

"We want to set an agenda for the next generation of studies and focus on comparative work beyond the standard species that have been examined," said Beecher. "Researchers would benefit from looking at species that do things differently because there are very different learning patterns. There is no one typical way in which songbirds learn."

"Some birds stick with what they learned the year before, others change," added Brenowitz. "There is a pool of plasticity in the bird brain that such species as mockingbirds and starlings take advantage of but white-crowned sparrows don’t. There is a parallel in human language learning – factors that limit most people in learning a second language to childhood, while a few have no problem, even as adults."

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>