Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers call for expanding the repertoire in studying birdsong

29.03.2005


A pair of leading scientists who study songbirds as models for understanding the human brain and how humans acquire language say it’s time for the burgeoning field to begin singing a different tune and study a wider variety of species.



Michael Beecher and Eliot Brenowitz, University of Washington professors of psychology and biology, say that while a great deal of knowledge has been gleaned by studying songbirds over the past three decades, a narrow focus on just a few species only provides a fragmentary picture of how the brains of nearly 4,000 songbird species function.

Writing in companion papers in the March issues of the journals Trends in Neurosciences and Trends in Ecology and Evolution, the two UW scientists argue that there is much greater diversity in how and when birds learn to sing than is generally recognized. They say the value of the birdsong system as a model for studying how the brain controls the learning of language would be greatly enhanced by taking into account the diversity seen among different bird species.


"We are interested in comparative approaches," said Beecher, who is an animal behaviorist. "There are many patterns of learning, but most studies are on zebra finches or white-crowned sparrows, in which song learning is restricted to the first year of life. People are not taking advantage of the wide spectrum of bird species. There probably are more species learning songs into their third and fourth years than those who only learn in the first few months or first year."

"One of the great things about songbirds is there is great variety in the manner in which different species learn to sing," said Brenowitz, a neurobiologist. "They are great models, but we should take advantage of the diversity of what they have to offer."

Brenowitz noted that the often-studied zebra finch is sexually mature in just 90 days.

"They learn song quickly so it is hard to say this change in the brain is related to this aspect of song development. We can understand these kinds of things better in other species that mature more slowly. We can learn, for example, how the brain controls learning new songs as an adult, or to mimic the songs of other species. With different species, you get to ask all kinds of questions and get all kinds of answers that you can’t with any single species."

The researchers said scientists need to be cautious about regarding the behavior of one or two species as typical of all songbirds in general.

"Settling on one species is risky," said Brenowitz, "because it depends on which species you began with. If you started with the starling, which learns throughout its life, rather than the zebra finch, our view of the basic or norm for birds would be very different."

The UW scientists said that previous research tended to label songbirds as either closed-end or open-ended learners, depending on when they learned their song repertoires. The assumption has been that most species, with a few exceptions, learned their songs early in life. More recent research, Beecher and Brenowitz said, has shown that there is a continuum of learning, with some species acquiring a fixed repertoire early in life, others whose song changes over the course of a year, others that add new songs from year to year and still others who learn an entirely new group of songs each year.

"We want to set an agenda for the next generation of studies and focus on comparative work beyond the standard species that have been examined," said Beecher. "Researchers would benefit from looking at species that do things differently because there are very different learning patterns. There is no one typical way in which songbirds learn."

"Some birds stick with what they learned the year before, others change," added Brenowitz. "There is a pool of plasticity in the bird brain that such species as mockingbirds and starlings take advantage of but white-crowned sparrows don’t. There is a parallel in human language learning – factors that limit most people in learning a second language to childhood, while a few have no problem, even as adults."

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>