Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers uncover gene variant that appears to predict type 2 diabetes

24.03.2005


A particular gene variant that could serve as a predictor for type 2 diabetes has been identified by researchers at UT Southwestern Medical Center.

Their findings indicated that a variation in the gene ENPP1 was as much as 13 percent more common in people with type 2 diabetes and those at greater risk for the disease. While further studies are needed, researchers said these results suggest that the variant may serve as an important genetic marker in identifying people at risk for type 2 diabetes. "This important study uncovers one of the genes that appears to predispose to type 2 diabetes," said Dr. Scott Grundy, director of UT Southwestern’s Center for Human Nutrition and the study’s senior author.

In the study available online and scheduled to appear in the April issue of Diabetes, the researchers evaluated a specific gene in three study groups – South Asians, South Asians living in Dallas and Caucasians living in Dallas. Some study subjects suffered from type 2 diabetes, others had risk factors for the disease, while still others showed no signs of diabetes or any apparent risk factors. "The implication from our study is that if a person has this gene variation, then – without waiting for the development of insulin resistance – he or she should be encouraged to follow lifestyle changes that could help prevent the onset of diabetes," said Dr. Nicola Abate, associate professor of internal medicine in the Center for Human Nutrition and the study’s lead author.



Type 2 diabetes has become a serious health problem, particularly in light of the growing number of overweight and obese individuals in the United States, Dr. Abate said. In type 2 diabetes, cells ignore available insulin (insulin resistance) and not enough insulin is produced to maintain plasma glucose within a normal range. While obesity is one of the major risk factors for type 2 diabetes, not all obese people develop type 2 diabetes nor are all type 2 diabetics overweight. Certain ethnic populations appear to have a higher risk of developing type 2 diabetes, whether overweight or not, particularly South Asians – people originating from India, Pakistan and Bangladesh.

The study focused on 679 South Asians living in Chennai, India (of which 223 had type 2 diabetes); 1,083 South Asians living in Dallas who were new immigrants or first-generation immigrants from India, Pakistan or Bangladesh (of which 121 had type 2 diabetes); and 858 nonmigrant Caucasians living in Dallas (of which 141 were type 2 diabetics). All study participants with type 2 diabetes were required to have had diabetes onset before age 60. All subjects were evaluated for diabetes and family history of diabetes, as well as overall general health, and had blood tests conducted for genetic sampling.

Results showed the presence of the ENPP1 variant in 25 percent of the nondiabetic group and in 34 percent of the diabetic group of South Asians living in India; in 33 percent and 45 percent, respectively, in the nondiabetic and diabetic South Asians in Dallas; and 26 percent and 39 percent, respectively, in the nondiabetic and diabetic Caucasians. The gene ENPP1 encodes a protein that blocks the action of insulin. The genetic variation increases the action of this protein and blocks insulin action even more. "Earlier studies we conducted showed a propensity toward insulin resistance and type 2 diabetes in South Asians, even when they were thin," Dr. Abate said. "This study expanded that to include diabetic patients and Caucasians of European descent. It also took into account the possible influence of environmental factors by comparing South Asians in both Dallas and in Chennai. "Consistently, we found that this gene variant in all three groups predicted diabetes."

UT Southwestern researchers plan to expand their studies to other ethnic populations, as well as further examine the specific protein involved, with the hope of eventually identifying people at risk for type 2 diabetes and developing drug therapies that could be used to prevent its onset. "Dr. Abate’s previous studies showed that abnormalities in the gene ENPP1 contributed to insulin resistance. Now, Dr. Abate and his associates have demonstrated that this gene’s effects on insulin resistance have biological significance in that its abnormalities make it more likely that people will develop diabetes," Dr. Grundy said. "This study is particularly revealing because of the past difficulty in identifying diabetes-causing genes on the part of geneticists working in the diabetes field."

Donna Steph Hansard | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>