Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New noble gas chemical compounds created as result of Hebrew University Research

23.03.2005


Chemical compounds consisting of noble gases combined with hydrocarbon molecules – a feat previously thought to be unattainable – have been created as the result of the work of researchers at the Hebrew University of Jerusalem.

This achievement by Benny Gerber, Saerree K. and Louis P. Fiedler Professor of Chemistry, and his associates at the Hebrew University Institute of Chemistry opens the way for further research to produce new chemical compounds in such areas as anesthesiology and high-energy fuels that will be more efficient, safer and ecologically less injurious than materials now in use.

Until now, the “laws” of chemistry decreed that the noble elements, including the gases helium, neon, argon, krypton, xenon and radon, which are found on the right-hand side of the periodic table, have a special status. These elements have inert atoms which do not combine chemically with other atoms, except under conditions of extreme energy being applied to release their electrons. This observation, described towards the end of the 19th century, was explained with the development of quantum theory about 70 years ago, when it was discovered that the inertia of the noble gas atoms derives from their closed and stable electronic shells, which makes these atoms practically impervious to chemical reactions with other atoms.



A major development in “breaking” these electronic shells in order to achieve molecular combinations was accomplished in the 1960s, but only with great difficulty and for a only a few extremely potent reagents, such as fluorine. This limited the types of compounds that could be made and their potential applications.

Since then, the search for new compounds involving noble gases has continued and has represented a significant scientific challenge with great promise. An important breakthrough in this field was achieved by Prof. Gerber of the Hebrew University when he predicted, on the basis of theoretical calculations, the existence of a new chemical “family” made up of noble gas atoms and hydrocarbons.

Operating on the basis of Prof. Gerber’s theories, leading scientists in Finland (Prof. Markku Rasanen and coworkers) and in Moscow (Prof. Vladimir Feldman and others) succeeded in producing the new compounds in their laboratories. The process by which these compounds were obtained was relatively much easier than in previous attempts, without having to resort to the techniques used in the past involving undesirable, extremely reactive materials.

The combining of noble gas atoms with basic organic molecules (hydrocarbons) is an accomplishment which has aroused great interest in the international chemical community and opens the way for new varieties of chemical derivates utilizing these gases. For example, the gas xenon, which does not have any negative physiological effects, could be used to produce new anesthetic compounds. Another possible use would be the production of new fuels that would be more energy efficient and less polluting than those now in use. Other applications could be in the creation of any number of new chemical-based products used in industry, medicine or agriculture that would be less polluting of the environment than materials currently used.

Jerry Barach | University of Jerusalem
Further information:
http://www.huji.ac.il/huji/eng/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>