Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New noble gas chemical compounds created as result of Hebrew University Research

23.03.2005


Chemical compounds consisting of noble gases combined with hydrocarbon molecules – a feat previously thought to be unattainable – have been created as the result of the work of researchers at the Hebrew University of Jerusalem.

This achievement by Benny Gerber, Saerree K. and Louis P. Fiedler Professor of Chemistry, and his associates at the Hebrew University Institute of Chemistry opens the way for further research to produce new chemical compounds in such areas as anesthesiology and high-energy fuels that will be more efficient, safer and ecologically less injurious than materials now in use.

Until now, the “laws” of chemistry decreed that the noble elements, including the gases helium, neon, argon, krypton, xenon and radon, which are found on the right-hand side of the periodic table, have a special status. These elements have inert atoms which do not combine chemically with other atoms, except under conditions of extreme energy being applied to release their electrons. This observation, described towards the end of the 19th century, was explained with the development of quantum theory about 70 years ago, when it was discovered that the inertia of the noble gas atoms derives from their closed and stable electronic shells, which makes these atoms practically impervious to chemical reactions with other atoms.



A major development in “breaking” these electronic shells in order to achieve molecular combinations was accomplished in the 1960s, but only with great difficulty and for a only a few extremely potent reagents, such as fluorine. This limited the types of compounds that could be made and their potential applications.

Since then, the search for new compounds involving noble gases has continued and has represented a significant scientific challenge with great promise. An important breakthrough in this field was achieved by Prof. Gerber of the Hebrew University when he predicted, on the basis of theoretical calculations, the existence of a new chemical “family” made up of noble gas atoms and hydrocarbons.

Operating on the basis of Prof. Gerber’s theories, leading scientists in Finland (Prof. Markku Rasanen and coworkers) and in Moscow (Prof. Vladimir Feldman and others) succeeded in producing the new compounds in their laboratories. The process by which these compounds were obtained was relatively much easier than in previous attempts, without having to resort to the techniques used in the past involving undesirable, extremely reactive materials.

The combining of noble gas atoms with basic organic molecules (hydrocarbons) is an accomplishment which has aroused great interest in the international chemical community and opens the way for new varieties of chemical derivates utilizing these gases. For example, the gas xenon, which does not have any negative physiological effects, could be used to produce new anesthetic compounds. Another possible use would be the production of new fuels that would be more energy efficient and less polluting than those now in use. Other applications could be in the creation of any number of new chemical-based products used in industry, medicine or agriculture that would be less polluting of the environment than materials currently used.

Jerry Barach | University of Jerusalem
Further information:
http://www.huji.ac.il/huji/eng/

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>