Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New noble gas chemical compounds created as result of Hebrew University Research

23.03.2005


Chemical compounds consisting of noble gases combined with hydrocarbon molecules – a feat previously thought to be unattainable – have been created as the result of the work of researchers at the Hebrew University of Jerusalem.

This achievement by Benny Gerber, Saerree K. and Louis P. Fiedler Professor of Chemistry, and his associates at the Hebrew University Institute of Chemistry opens the way for further research to produce new chemical compounds in such areas as anesthesiology and high-energy fuels that will be more efficient, safer and ecologically less injurious than materials now in use.

Until now, the “laws” of chemistry decreed that the noble elements, including the gases helium, neon, argon, krypton, xenon and radon, which are found on the right-hand side of the periodic table, have a special status. These elements have inert atoms which do not combine chemically with other atoms, except under conditions of extreme energy being applied to release their electrons. This observation, described towards the end of the 19th century, was explained with the development of quantum theory about 70 years ago, when it was discovered that the inertia of the noble gas atoms derives from their closed and stable electronic shells, which makes these atoms practically impervious to chemical reactions with other atoms.



A major development in “breaking” these electronic shells in order to achieve molecular combinations was accomplished in the 1960s, but only with great difficulty and for a only a few extremely potent reagents, such as fluorine. This limited the types of compounds that could be made and their potential applications.

Since then, the search for new compounds involving noble gases has continued and has represented a significant scientific challenge with great promise. An important breakthrough in this field was achieved by Prof. Gerber of the Hebrew University when he predicted, on the basis of theoretical calculations, the existence of a new chemical “family” made up of noble gas atoms and hydrocarbons.

Operating on the basis of Prof. Gerber’s theories, leading scientists in Finland (Prof. Markku Rasanen and coworkers) and in Moscow (Prof. Vladimir Feldman and others) succeeded in producing the new compounds in their laboratories. The process by which these compounds were obtained was relatively much easier than in previous attempts, without having to resort to the techniques used in the past involving undesirable, extremely reactive materials.

The combining of noble gas atoms with basic organic molecules (hydrocarbons) is an accomplishment which has aroused great interest in the international chemical community and opens the way for new varieties of chemical derivates utilizing these gases. For example, the gas xenon, which does not have any negative physiological effects, could be used to produce new anesthetic compounds. Another possible use would be the production of new fuels that would be more energy efficient and less polluting than those now in use. Other applications could be in the creation of any number of new chemical-based products used in industry, medicine or agriculture that would be less polluting of the environment than materials currently used.

Jerry Barach | University of Jerusalem
Further information:
http://www.huji.ac.il/huji/eng/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>