Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin Diabetes Center scientists find genetic defects

23.03.2005


Defects give the immune system the green light to attack the pancreas

Scientists at Joslin Diabetes Center have found genetic regions that, when defective, allow the immune system to attack the pancreas - the first in a series of mis-steps that lead to type 1 diabetes. Armed with these findings, published today, March 22, in the journal Immunity, the researchers are now trying to hone in on the exact genes involved, in mice and in human patients.

"The significance of this study is that we found the chromosomal regions involved and can now zero in on the precise genes," said Diane Mathis, Ph.D., the study’s principal investigator along with Christophe Benoist, M.D., Ph.D. They head the Section on Immunology and Immunogenetics at Joslin, and hold joint William T. Young Chairs in Diabetes Research. They are also Professors of Medicine at Harvard Medical School. The work was spearheaded by a group of Joslin fellows, hailing from across the globe: Silvia Zucchelli, Ph.D., who has now returned to Italy; Phil Holler, Ph.D., from the U.S.; and Tetsuya Yamagata, M.D., Ph.D, from Japan.



The genetic defect keeps the body from properly dealing with "errant" immune cells that it normally eliminates by a process called immunological tolerance. These immune cells then attack the insulin-producing beta cells in the pancreas, mistaking them as foreign invaders. "It’s critical for the immune system to recognize and tolerate tissues that belong in the body, which immunologists call ’tolerance,’" said Dr. Zucchelli. "Previous studies have shown that when the T-cells don’t learn this tolerance, they can infiltrate the pancreas and attack the insulin-producing beta cells." This first step in the onset of type 1 diabetes is called insulitis. Later in life, within weeks or even years, full-blown type 1 diabetes emerges.

An estimated 1 million people in the United States have type 1 diabetes. Their pancreatic beta cells can no longer make insulin. Without this crucial hormone, their body cannot convert food into energy. To sustain life, they must get insulin through injections. The disorder can emerge in childhood, adolescence and even appear in adulthood, but the genetic stage is set beforehand.

T-cells play a key role. They are part of the highly complex array of immune cells that normally work together to fight invaders such as bacteria or viruses, adapting specifically to each new invader. Formed in the thymus gland, T-cells begin as "precursor" cells and mature -- during this time, receptor sites on their outer membrane are shaped to dock with each invader and destroy it. "As T-cells form, it is not uncommon for a few to randomly develop with the potential ability to attack the body’s own cells," said Dr. Holler. "That’s when a safeguard mechanism normally kicks in to eliminate these errant T-cells. Our team found the genetic regions that govern this safeguard."

What if the safeguard mechanism is defective? Left unchecked, the self-destructive T-cells can roam throughout the body and wreak havoc. This is the process behind many autoimmune, or "self-immune," diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis and others.

To understand what happens in type 1 diabetes, the researchers combined a unique set of cutting-edge technologies, using cultures of thymus cells from transgenic mice, together with DNA chips and "genome scans." They compared non-obese diabetic (NOD) mice, which researchers elsewhere had shown to have the tolerance defect, with diabetes-resistant controls. They looked for regions where the data from the DNA chips and the genome scan converged. Overlap would indicate the regions and genes that affect tolerance. In the mice with diabetes, two findings emerged - a distinct decrease of activity in regions that governed the elimination of errant T-cells, and an increase of activity promoting their survival. The safeguard system was broken. The T-cells were alive and able to leave the thymus and attack beta cells.

Now that the chromosomal regions are known, the researchers are seeking the precise genes involved. "Once these genes are identified, we will be better able to define the biologic pathways that lead to type 1 diabetes," said Dr. Yamagata. "We then can work on designing ways to subdue or stop this process."

Marjorie Dwyer | EurekAlert!
Further information:
http://www.joslin.harvard.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>