Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin Diabetes Center scientists find genetic defects

23.03.2005


Defects give the immune system the green light to attack the pancreas

Scientists at Joslin Diabetes Center have found genetic regions that, when defective, allow the immune system to attack the pancreas - the first in a series of mis-steps that lead to type 1 diabetes. Armed with these findings, published today, March 22, in the journal Immunity, the researchers are now trying to hone in on the exact genes involved, in mice and in human patients.

"The significance of this study is that we found the chromosomal regions involved and can now zero in on the precise genes," said Diane Mathis, Ph.D., the study’s principal investigator along with Christophe Benoist, M.D., Ph.D. They head the Section on Immunology and Immunogenetics at Joslin, and hold joint William T. Young Chairs in Diabetes Research. They are also Professors of Medicine at Harvard Medical School. The work was spearheaded by a group of Joslin fellows, hailing from across the globe: Silvia Zucchelli, Ph.D., who has now returned to Italy; Phil Holler, Ph.D., from the U.S.; and Tetsuya Yamagata, M.D., Ph.D, from Japan.



The genetic defect keeps the body from properly dealing with "errant" immune cells that it normally eliminates by a process called immunological tolerance. These immune cells then attack the insulin-producing beta cells in the pancreas, mistaking them as foreign invaders. "It’s critical for the immune system to recognize and tolerate tissues that belong in the body, which immunologists call ’tolerance,’" said Dr. Zucchelli. "Previous studies have shown that when the T-cells don’t learn this tolerance, they can infiltrate the pancreas and attack the insulin-producing beta cells." This first step in the onset of type 1 diabetes is called insulitis. Later in life, within weeks or even years, full-blown type 1 diabetes emerges.

An estimated 1 million people in the United States have type 1 diabetes. Their pancreatic beta cells can no longer make insulin. Without this crucial hormone, their body cannot convert food into energy. To sustain life, they must get insulin through injections. The disorder can emerge in childhood, adolescence and even appear in adulthood, but the genetic stage is set beforehand.

T-cells play a key role. They are part of the highly complex array of immune cells that normally work together to fight invaders such as bacteria or viruses, adapting specifically to each new invader. Formed in the thymus gland, T-cells begin as "precursor" cells and mature -- during this time, receptor sites on their outer membrane are shaped to dock with each invader and destroy it. "As T-cells form, it is not uncommon for a few to randomly develop with the potential ability to attack the body’s own cells," said Dr. Holler. "That’s when a safeguard mechanism normally kicks in to eliminate these errant T-cells. Our team found the genetic regions that govern this safeguard."

What if the safeguard mechanism is defective? Left unchecked, the self-destructive T-cells can roam throughout the body and wreak havoc. This is the process behind many autoimmune, or "self-immune," diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis and others.

To understand what happens in type 1 diabetes, the researchers combined a unique set of cutting-edge technologies, using cultures of thymus cells from transgenic mice, together with DNA chips and "genome scans." They compared non-obese diabetic (NOD) mice, which researchers elsewhere had shown to have the tolerance defect, with diabetes-resistant controls. They looked for regions where the data from the DNA chips and the genome scan converged. Overlap would indicate the regions and genes that affect tolerance. In the mice with diabetes, two findings emerged - a distinct decrease of activity in regions that governed the elimination of errant T-cells, and an increase of activity promoting their survival. The safeguard system was broken. The T-cells were alive and able to leave the thymus and attack beta cells.

Now that the chromosomal regions are known, the researchers are seeking the precise genes involved. "Once these genes are identified, we will be better able to define the biologic pathways that lead to type 1 diabetes," said Dr. Yamagata. "We then can work on designing ways to subdue or stop this process."

Marjorie Dwyer | EurekAlert!
Further information:
http://www.joslin.harvard.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>