Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory scientists find new prostate cancer suppressor gene

23.03.2005


A gene named ATBF1 may contribute to the development of prostate cancer through acquired mutations and/or loss of expression, according to research at Emory University School of Medicine and its Winship Cancer Institute. The findings were published in the online edition of Nature Genetics on March 6. The Emory research team was led by Jin-Tang Dong, PhD, associate professor in the Winship Cancer Institute. Lead author was postdoctoral fellow Xiaodong Sun, PhD.

Although previous research has suggested that a section of chromosome 16 harbors a tumor suppressor gene in several types of human cancers, the particular gene responsible has not previously been identified. By studying the genes within the section of chromosome 16, the Emory scientists found that ATBF1 was a strong candidate for an important tumor suppressor gene because its function is frequently lost in prostate cancer through gene mutations and/or loss of expression. In addition, ATBF1 was found to inhibit cell growth in culture dishes. A tumor suppressor gene is a gene whose loss of function contributes to the development of cancer.

ATBF1 is a transcription factor (regulator of gene expression) that functions to regulate the expression of other genes. If its function is impaired by mutations or loss of expression, a cell could lose the control of cancer genes. The Myb oncogene, for example, is normally inhibited by ATBF1, but it can be activated if ATBF1 is lost.



"Sporadic cancers often are the result of multiple genetic alterations that accumulate over time," said Dr. Dong, "but only a small number of genes have been shown to undergo these frequent mutations. Because ATBF1 inhibits cell proliferation, frequent acquired mutations that inhibit the gene, such as the ones we found, could lead to a lack of growth control in prostate cancer. Because gene deletion in chromosome 16 is common in many types of cancer, including lung, head and neck, nasopharynx, stomach, breast, and ovary, ATBF1 could be involved in the development of these cancers as well."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>