Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Emory scientists find new prostate cancer suppressor gene


A gene named ATBF1 may contribute to the development of prostate cancer through acquired mutations and/or loss of expression, according to research at Emory University School of Medicine and its Winship Cancer Institute. The findings were published in the online edition of Nature Genetics on March 6. The Emory research team was led by Jin-Tang Dong, PhD, associate professor in the Winship Cancer Institute. Lead author was postdoctoral fellow Xiaodong Sun, PhD.

Although previous research has suggested that a section of chromosome 16 harbors a tumor suppressor gene in several types of human cancers, the particular gene responsible has not previously been identified. By studying the genes within the section of chromosome 16, the Emory scientists found that ATBF1 was a strong candidate for an important tumor suppressor gene because its function is frequently lost in prostate cancer through gene mutations and/or loss of expression. In addition, ATBF1 was found to inhibit cell growth in culture dishes. A tumor suppressor gene is a gene whose loss of function contributes to the development of cancer.

ATBF1 is a transcription factor (regulator of gene expression) that functions to regulate the expression of other genes. If its function is impaired by mutations or loss of expression, a cell could lose the control of cancer genes. The Myb oncogene, for example, is normally inhibited by ATBF1, but it can be activated if ATBF1 is lost.

"Sporadic cancers often are the result of multiple genetic alterations that accumulate over time," said Dr. Dong, "but only a small number of genes have been shown to undergo these frequent mutations. Because ATBF1 inhibits cell proliferation, frequent acquired mutations that inhibit the gene, such as the ones we found, could lead to a lack of growth control in prostate cancer. Because gene deletion in chromosome 16 is common in many types of cancer, including lung, head and neck, nasopharynx, stomach, breast, and ovary, ATBF1 could be involved in the development of these cancers as well."

Holly Korschun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>