Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists solve structure of key protein in innate immune response

22.03.2005


When bacteria invade the body, a molecule called CD14 binds to substances liberated from the bacteria and initiates the cellular defense mechanisms. In a report published in the Journal of Biological Chemistry, scientists in Korea announced their elucidation of three-dimensional structure of CD14 and showed how it is perfectly suited to bind to certain bacterial products.



The research appears as the "Paper of the Week" in the March 25 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

The innate immune system uses the CD14 receptor protein to recognize several microbial and cellular products including lipopolysaccharide (LPS), a glycolipid found on the outer membrane of certain bacteria. Once CD14 binds to LPS or another ligand, it presents the molecule to other proteins which initiate a strong pro-inflammatory response that stimulates host defenses.


"Macrophages and monocytes can recognize distinct structural patterns in various molecules from pathogenic microorganisms," explains Dr. Jie-Oh Lee of the Korea Advanced Institute of Science and Technology. "LPS is the most famous and probably the most important inducer of the innate immune response."

Dr. Lee and his colleagues solved the three-dimensional crystal structure of CD14, providing crucial insights into how the receptor binds to its ligands. "Our structure shows that CD14 has a large hydrophobic pocket near its amino terminus," says Dr. Lee. "We propose that this pocket is the main binding site for LPS because previous biochemical studies demonstrate that amino acid residues comprising the pocket are critical for LPS binding. Most, if not all, of the CD14 ligands compete with LPS for CD14 binding. Therefore, they probably share the same binding pocket with LPS."

Ligands other than LPS can be accommodated in the pocket due to its large size, the flexibility of its rim, and the multiple grooves available for ligand binding. The researchers also discovered that mutations that interfere with LPS signaling cluster in a separate area near the pocket suggesting that the areas around the pocket are important in LPS transfer.

Not only do these findings shed light on how cells recognize pathogens, they also may also lead to the development of drugs to help treat septic shock, an often fatal systemic bacterial infection that is triggered by LPS.

"Pharmaceutical companies have tried to develop anti-septic shock agents for a long time without clear success," explains Dr. Lee. "Since LPS is an important inducer of septic shock, blocking LPS receptors such as CD14 are among the most important targets. Our structure shows the shape of the LPS binding pocket of CD14. Now, drug developers will have better chance to design a molecule that will complement the shape of the pocket."

Nicole Kresge | EurekAlert!
Further information:
http://www.jbc.org
http://www.asbmb.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>