Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Influenza vaccine uses insect cells to speed development


Using a strategy involving a genetically modified baculovirus and caterpillar cells scientists from Protein Sciences Corporation have been able to speed up a key step in the development of an experimental cell-based influenza vaccine. They report their findings today at the 2005 American Society for Microbiology Biodefense Research Meeting.

"The bird flu may become the next flu pandemic strain. It could happen at any time," says Keyang Wang, a scientist at Protein Sciences Corp. and a researcher on the study. "The most effective method to control such an outbreak is the widespread use of a vaccine. The traditional egg-based method requires 3 to 6 months to develop the vaccine. With our cell-based method, the time from receipt of the virus strain to the final vaccine product would be shortened to approximately 1 to 2 months."

Today’s flu vaccines are prepared in fertilized chicken eggs. The eggshell is punctured, and the influenza virus is injected into the fluid surrounding the embryo. The egg is then resealed, the embryo becomes infected, and the resulting virus is then harvested, purified and used to produce the vaccine. In addition to the long development time, another drawback to this method is the possibility that an avian influenza virus would be lethal to embryos in the eggs.

The vaccine strategy pursued by Protein Sciences, known commercially as FluBlok, does not rely on whole vaccine virus. It uses a purified concentration of a key molecule on the surface of the virus, called hemagglutinin, to elicit an immune response against that specific strain of the virus.

Wang and his colleagues have developed a methodology for rapidly producing and purifying hemagglutinin from an influenza virus. They extract the genes responsible for the production of hemagglutinin from the virus and insert them into a baculovirus. Caterpillar cells are then infected with the virus and begin to produce the hemagglutinin.

The FluBlok vaccine has recently finished phase II clinical trials, where it has established safety and the ability to elicit a strong antibody response in humans.

"Since all the media used here are chemically stable and commercially available, the process can be easily scaled up for commercial manufacture," says Wang. "New FluBlok vaccines can be developed quickly and safely to address late appearing influenza viruses and to reduce the impact of a potential flu pandemic."

Jim Sliwa | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>