Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Influenza vaccine uses insect cells to speed development

22.03.2005


Using a strategy involving a genetically modified baculovirus and caterpillar cells scientists from Protein Sciences Corporation have been able to speed up a key step in the development of an experimental cell-based influenza vaccine. They report their findings today at the 2005 American Society for Microbiology Biodefense Research Meeting.



"The bird flu may become the next flu pandemic strain. It could happen at any time," says Keyang Wang, a scientist at Protein Sciences Corp. and a researcher on the study. "The most effective method to control such an outbreak is the widespread use of a vaccine. The traditional egg-based method requires 3 to 6 months to develop the vaccine. With our cell-based method, the time from receipt of the virus strain to the final vaccine product would be shortened to approximately 1 to 2 months."

Today’s flu vaccines are prepared in fertilized chicken eggs. The eggshell is punctured, and the influenza virus is injected into the fluid surrounding the embryo. The egg is then resealed, the embryo becomes infected, and the resulting virus is then harvested, purified and used to produce the vaccine. In addition to the long development time, another drawback to this method is the possibility that an avian influenza virus would be lethal to embryos in the eggs.


The vaccine strategy pursued by Protein Sciences, known commercially as FluBlok, does not rely on whole vaccine virus. It uses a purified concentration of a key molecule on the surface of the virus, called hemagglutinin, to elicit an immune response against that specific strain of the virus.

Wang and his colleagues have developed a methodology for rapidly producing and purifying hemagglutinin from an influenza virus. They extract the genes responsible for the production of hemagglutinin from the virus and insert them into a baculovirus. Caterpillar cells are then infected with the virus and begin to produce the hemagglutinin.

The FluBlok vaccine has recently finished phase II clinical trials, where it has established safety and the ability to elicit a strong antibody response in humans.

"Since all the media used here are chemically stable and commercially available, the process can be easily scaled up for commercial manufacture," says Wang. "New FluBlok vaccines can be developed quickly and safely to address late appearing influenza viruses and to reduce the impact of a potential flu pandemic."

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>