Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key target for Foot and Mouth drug revealed

21.03.2005


A complete picture of Foot-and-Mouth Disease’s key replication enzyme could lead to the development of new drugs to control the disease without recourse to vaccination or slaughter, scientists report today.



By solving the structure of the Foot-and-Mouth Disease Virus (FMDV) enzyme named ’3C protease’ scientists have taken an essential step towards developing protease inhibitors, a class of anti-viral drug that has proved hugely successful in controlling HIV.

The structure paves the way for their development by revealing the atomic details of the key viral enzyme that would serve as a target for drugs.


3C protease’s function is to help the virus replicate itself. A drug that binds and inhibits FMDV 3C protease would stop its spread by blocking its replication and thus its ability to infect a herd.

"In an outbreak we would ’dose up’ the animals and in theory they would be protected immediately," said Dr Stephen Curry of Imperial College London and senior author of the research paper, published in Journal of Biological Chemistry this week. "In contrast, vaccines take several days to have effect and that allows further spread of the disease."

"Our work is a very first step in developing an effective drug to do this. We can see what the enzyme looks like and it gives us an idea of what sort of shapes and types of molecule could bind specifically to the enzyme and block it."

The Imperial researchers are now designing a molecule to act as an inhibitor.

Together with Professor Robin Leatherbarrow of the Department of Chemistry, Dr Curry’s team from the Division of Cell and Molecular Biology has probed the specificity of the 3C enzyme in the hope of developing peptide-like inhibitors, similar to those successful in tackling HIV. Professor Leatherbarrow is mapping out the key amino acid sequences that the protease snips in-between, a process called ’peptide cleavage analysis’.

"We’ve determined the key features of peptides that are recognised by the FMDV 3C protease. Now we can start working on making the inhibitors," said Dr Curry.

During the devastating outbreak of Foot-and-Mouth in the UK in 2001, there was much debate as to whether vaccines should be used to control the disease. They were not deployed and the government relied on mass slaughter of five million animals to bring the epidemic under control.

Protease inhibitors were developed against HIV in the 1980s and 1990s, the first going on sale in 1996. However, interactions between the drugs and the HIV virus have given rise to drug-resistant strains, reducing the treatment’s effectiveness.

Although the same strategy is being adopted, Dr Curry does not foresee the same happening with an FMDV protease inhibitor due to the intrinsic differences between the diseases:

"HIV is a very long term infection, taking 10-15 years to overwhelm the body. That gives the virus plenty of time to develop resistance to anti-viral drugs. FMDV is highly contagious, much easier to get than HIV, and has a rapid onset, which is why outbreaks tend to spread so rapidly," said Dr Curry. "If you wanted to control an FMDV outbreak you could in theory swamp the livestock population with anti-viral drugs for a few weeks and hopefully eradicate the outbreak very quickly."

The 23,000 Dalton (weight) enzyme, is made of 213 amino acids, and is folded into a classic protease form, similar to those seen in poliovirus, hepatitis A virus and human rhinovirus, the major cause of the common cold.

The structure took over four years to solve, the start of research pre-dating the 2001 Foot-and-Mouth outbreak. The greatest problems came in making crystals of the 3C protease so that its structure could be solved by X-ray crystallography -- a particularly taxing task to solve for then beginning PhD student and first author of this paper, Dr James Birtley.

The work was supported by the Biological and Biotechnological Sciences Research Council, the Fleming Fund (Imperial College London), and the Medical Research Council.

Tom Miller | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>