Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals

21.03.2005


In a first, Carnegie Mellon University scientists have "programmed" cells to make their own contrast agents, enabling unprecedented high-resolution, deep-tissue imaging of gene expression. The results, appearing in the April issue of Nature Medicine, hold considerable promise for conducting preclinical studies in the emerging field of molecular therapeutics and for monitoring the delivery of therapeutic genes in patients.

"For 20 years it has been the chemist’s job to develop agents that can be used to enhance MRI contrast," said Eric Ahrens, assistant professor of biological sciences in the Mellon College of Science at Carnegie Mellon. "Now, with our approach, we have put this job into the hands of the molecular biologist. Using off-the-shelf molecular biology tools we can now enable living cells to change their MRI contrast via genetic instructions."

"The new imaging method is a platform technology that can be adapted for many tissue types and for a range of preclinical uses in conjunction with emerging molecular therapeutic strategies," Ahrens said.



Ahrens’ new approach uses magnetic resonance imaging (MRI) to monitor gene expression in real-time. Because MRI images deep tissues non-invasively and at high resolution, investigators don’t need to sacrifice animals and perform laborious and costly analysis.

To trigger living cells into producing their own contrast agent, Ahrens gave them a gene that produces a form of ferritin, a protein that normally stores iron in a non-toxic form. This metalloprotein acts like a nano-magnet and a potent MRI "reporter."

A typical MRI scan detects and analyzes signals given off by hydrogen protons in water molecules after they are exposed to a magnetic field and radiofrequency pulses. These signals are then converted into an image. Ahrens’ new MRI reporter alters the magnetic field in its proximity, causing nearby protons to give off a distinctly different signal. The resulting image reveals dark areas that indicate the presence of the MRI reporter.

"Our technology is adaptable to monitor gene expression in many tissue types. You could link this MRI reporter gene to any other gene of interest, including therapeutic genes for diseases like cancer and arthritis, to detect where and when they are being expressed," Ahrens said.

Existing methods used to image gene expression have limitations, according to Ahrens. Some methods cannot be used in living subjects, fail to image cells deep inside the body or don’t provide high-resolution images. Other approaches using MRI are not practical for a wide range of applications.

Ahrens and his colleagues constructed a gene carrier, or vector, that contained a gene for the MRI reporter. They used a widely studied vector called a replication-defective adenovirus that readily enters cells but doesn’t reproduce itself. Ahrens injected the vector carrying the MRI reporter gene into brains of living mice and imaged the MRI reporter expression periodically for over a month in the same cohort of animals. The research showed no overt toxicity in the mouse brain from the MRI reporter.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>