Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon scientists develop tool that uses MRI to visualize gene expression in living animals

21.03.2005


In a first, Carnegie Mellon University scientists have "programmed" cells to make their own contrast agents, enabling unprecedented high-resolution, deep-tissue imaging of gene expression. The results, appearing in the April issue of Nature Medicine, hold considerable promise for conducting preclinical studies in the emerging field of molecular therapeutics and for monitoring the delivery of therapeutic genes in patients.

"For 20 years it has been the chemist’s job to develop agents that can be used to enhance MRI contrast," said Eric Ahrens, assistant professor of biological sciences in the Mellon College of Science at Carnegie Mellon. "Now, with our approach, we have put this job into the hands of the molecular biologist. Using off-the-shelf molecular biology tools we can now enable living cells to change their MRI contrast via genetic instructions."

"The new imaging method is a platform technology that can be adapted for many tissue types and for a range of preclinical uses in conjunction with emerging molecular therapeutic strategies," Ahrens said.



Ahrens’ new approach uses magnetic resonance imaging (MRI) to monitor gene expression in real-time. Because MRI images deep tissues non-invasively and at high resolution, investigators don’t need to sacrifice animals and perform laborious and costly analysis.

To trigger living cells into producing their own contrast agent, Ahrens gave them a gene that produces a form of ferritin, a protein that normally stores iron in a non-toxic form. This metalloprotein acts like a nano-magnet and a potent MRI "reporter."

A typical MRI scan detects and analyzes signals given off by hydrogen protons in water molecules after they are exposed to a magnetic field and radiofrequency pulses. These signals are then converted into an image. Ahrens’ new MRI reporter alters the magnetic field in its proximity, causing nearby protons to give off a distinctly different signal. The resulting image reveals dark areas that indicate the presence of the MRI reporter.

"Our technology is adaptable to monitor gene expression in many tissue types. You could link this MRI reporter gene to any other gene of interest, including therapeutic genes for diseases like cancer and arthritis, to detect where and when they are being expressed," Ahrens said.

Existing methods used to image gene expression have limitations, according to Ahrens. Some methods cannot be used in living subjects, fail to image cells deep inside the body or don’t provide high-resolution images. Other approaches using MRI are not practical for a wide range of applications.

Ahrens and his colleagues constructed a gene carrier, or vector, that contained a gene for the MRI reporter. They used a widely studied vector called a replication-defective adenovirus that readily enters cells but doesn’t reproduce itself. Ahrens injected the vector carrying the MRI reporter gene into brains of living mice and imaged the MRI reporter expression periodically for over a month in the same cohort of animals. The research showed no overt toxicity in the mouse brain from the MRI reporter.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>