Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH skate choice follows MDI Bio Lab white paper

21.03.2005


With the National Institutes of Health announcing recently that the genome of the skate is going to be sequenced, the Mount Desert Island Biological Laboratory is poised to play an important role in this large-scale project.



The decision to fund the sequencing of the skate was in response to a proposal submitted by MDIBL, the Genome Sequencing Center of Washington University School of Medicine in St. Louis and the Benaroya Institute in Seattle. Approval came from the National Human Genome Research Institute (NHGRI), one of the National Institutes of Health.

The skate is one of 11 strategically selected non-mammalian organisms determined by a NHGRI panel to have the greatest potential to fill crucial gaps in human biomedical knowledge. According to Dr. Mark S. Guyer, Director of NHGRI’s Division of Extramural Research, "The most effective approach we currently have to identify the essential functional and structural components of the human genome is to compare it with the genomes of other organisms."


It has been shown that most human genome sequences originated long before humans themselves. Consequently, scientists will use the genomes of non-mammalian animals to learn more about how, when and why the human genome came to be composed of certain DNA sequences, as well as to gain new insights into organization of genomes. In addition, many of these organisms can shed light on human disease by systematically discovering causes compared to finding them by chance.

The skate, a member of the elasmobranch family, is one of the oldest vertebrate organisms, dating back 450 million years. Elasmobranchs (sharks, skates and rays) were one of the first primitive vertebrate species to develop a jaw, an important step on the evolutionary ladder.

For more than 100 years the MDIBL has served as a world leader in elasmobranch research. As one of only four Marine and Freshwater Biomedical Science Centers in the United States designated by the National Institute of Environmental Health Sciences, MDIBL has been home to scores of scientific experts utilizing sharks and skates to better understand human physiology, toxicology, immunology, stem cell and cancer biology, and neurobiology.

Dr. David Barnes, Senior Scientist and Associate Director of the Center for Marine Functional Genomic Studies at MDIBL said, "MDIBL is one of only a handful of research institutions in the world that specializes in elasmobranch research. Scientists here have been using the skate as a model since the early 1920’s and are largely responsible for development of the skate as a model organism for human disease. The result is that we have a high concentration of information and expertise on elasmobranch organisms and are well positioned to support this important initiative."

Data from the skate sequencing project will be integrated into MDIBL’s Comparative Toxicogenomics Database, an interactive database designed to assist scientists worldwide in comparing genetic information from more than 40,000 species in an effort to better understand genetic susceptibility to environmental toxins and disease.

"The decision to sequence the skate genome is an enormous step forward in the emerging field of marine functional genomics," said John N. Forrest, Jr., MD, Director of MDIBL. "Elasmobranch genomes hold many important clues to understanding the genes involved in development and disease. All of us at MDIBL are very pleased that the tremendous research potential of the skate will now be realized."

Grady Holloway | EurekAlert!
Further information:
http://www.ctd.mdibl.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>