Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists identify key gene in development of type 1 diabetes

18.03.2005


Chemists say they have identified a gene that appears to play a key role in the development of type 1 diabetes, also known as insulin-dependent or juvenile diabetes, a disease that affects about one million people in the U.S. and is on the rise worldwide. They described their findings, which they say could lead to new drug interventions and possibly gene therapy, today at the 229th national meeting of the American Chemical Society, the world’s largest scientific society.



In the current study, the researchers focused on the formation of the MIF protein (macrophage migration inhibitory factor), a proinflammatory protein that they showed in previous studies is elevated in diabetic animals and may be involved in the cascade of immunological events that leads to the destruction of the pancreas and the subsequent onset of type 1 diabetes. The disease is much less common than type 2 diabetes, formerly known as adult onset or non-insulin-dependent diabetes, which is often associated with obesity.

"We’ve shown that the MIF gene is crucial for the development of type 1 diabetes," says study leader Yousef Al-Abed, Ph.D., a chemist at the Institute for Medical Research of the North Shore-Long Island Jewish (LIJ) Health System in Manhasset, N.Y. "It is not the only factor involved in this complex disease, but it is certainly a promising target for its prevention and treatment."


In preliminary studies by the research group, specially bred mice that lacked the gene for the MIF protein failed to develop diabetes compared to mice that possessed the gene, according to the investigators. Although it’s likely that multiple genes are involved in the formation of diabetes, the finding provides proof of concept that efforts to block the formation of this particular protein is a promising approach for fighting diabetes, they say.

"The MIF gene may be regulating other genes involved in type 1 diabetes," says Al-Abed. "We don’t know yet, but we’re looking into this." Besides drug intervention, the new finding could lead to gene therapy to prevent the disease, possibly by disrupting the network of genes involved in its development, he says.

A potential drug treatment based on blocking the MIF protein is already being explored. In a study presented last year at an ACS national meeting, the researchers reported they were able to prevent diabetes in a group of mice by using a synthetic compound called ISO-1 to block the MIF protein. If human studies prove the effectiveness of ISO-1, the compound or its derivatives could ultimately save lives, reduce health care costs and help prediabetic people, particularly children, avoid a lifetime of insulin injections, Al-Abed says. Prediabetic individuals are those who have blood markers — either antibodies or genetic markers — that are predictive of the disease but are still able to produce insulin.

Al-Abed and his associates hope that the experimental compound can one day be developed into a long-acting oral drug that could be taken by prediabetic people to achieve lasting protection, perhaps a lifetime. But such a drug would take years to develop and test, the researchers caution. Likewise, effective gene therapy against the disease may take many years to develop, they add.

Besides prevention, ISO-1 also is being tested in animals to determine whether it will help in the actual treatment of ongoing type 1 diabetes and type 2 diabetes, the more common type. Results are not yet available from these tests, the researchers say.

Although nobody knows the exact cause of type 1 diabetes, and there is no cure, the disease can be controlled and its complications minimized by following a healthy diet, getting exercise and taking prescribed medications as directed, according to health experts.

The Institute for Medical Research at North Shore-LIJ provided funding for this study.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 159,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org
http://www.chemistry.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>