Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists identify key gene in development of type 1 diabetes

18.03.2005


Chemists say they have identified a gene that appears to play a key role in the development of type 1 diabetes, also known as insulin-dependent or juvenile diabetes, a disease that affects about one million people in the U.S. and is on the rise worldwide. They described their findings, which they say could lead to new drug interventions and possibly gene therapy, today at the 229th national meeting of the American Chemical Society, the world’s largest scientific society.



In the current study, the researchers focused on the formation of the MIF protein (macrophage migration inhibitory factor), a proinflammatory protein that they showed in previous studies is elevated in diabetic animals and may be involved in the cascade of immunological events that leads to the destruction of the pancreas and the subsequent onset of type 1 diabetes. The disease is much less common than type 2 diabetes, formerly known as adult onset or non-insulin-dependent diabetes, which is often associated with obesity.

"We’ve shown that the MIF gene is crucial for the development of type 1 diabetes," says study leader Yousef Al-Abed, Ph.D., a chemist at the Institute for Medical Research of the North Shore-Long Island Jewish (LIJ) Health System in Manhasset, N.Y. "It is not the only factor involved in this complex disease, but it is certainly a promising target for its prevention and treatment."


In preliminary studies by the research group, specially bred mice that lacked the gene for the MIF protein failed to develop diabetes compared to mice that possessed the gene, according to the investigators. Although it’s likely that multiple genes are involved in the formation of diabetes, the finding provides proof of concept that efforts to block the formation of this particular protein is a promising approach for fighting diabetes, they say.

"The MIF gene may be regulating other genes involved in type 1 diabetes," says Al-Abed. "We don’t know yet, but we’re looking into this." Besides drug intervention, the new finding could lead to gene therapy to prevent the disease, possibly by disrupting the network of genes involved in its development, he says.

A potential drug treatment based on blocking the MIF protein is already being explored. In a study presented last year at an ACS national meeting, the researchers reported they were able to prevent diabetes in a group of mice by using a synthetic compound called ISO-1 to block the MIF protein. If human studies prove the effectiveness of ISO-1, the compound or its derivatives could ultimately save lives, reduce health care costs and help prediabetic people, particularly children, avoid a lifetime of insulin injections, Al-Abed says. Prediabetic individuals are those who have blood markers — either antibodies or genetic markers — that are predictive of the disease but are still able to produce insulin.

Al-Abed and his associates hope that the experimental compound can one day be developed into a long-acting oral drug that could be taken by prediabetic people to achieve lasting protection, perhaps a lifetime. But such a drug would take years to develop and test, the researchers caution. Likewise, effective gene therapy against the disease may take many years to develop, they add.

Besides prevention, ISO-1 also is being tested in animals to determine whether it will help in the actual treatment of ongoing type 1 diabetes and type 2 diabetes, the more common type. Results are not yet available from these tests, the researchers say.

Although nobody knows the exact cause of type 1 diabetes, and there is no cure, the disease can be controlled and its complications minimized by following a healthy diet, getting exercise and taking prescribed medications as directed, according to health experts.

The Institute for Medical Research at North Shore-LIJ provided funding for this study.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 159,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org
http://www.chemistry.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>