Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vampire Bats Keep Out of Trouble by Running

17.03.2005


Although most people think of bats as stealthy mammals that flit about in the night sky, at least one species has evolved a terrestrial trot never before seen in bats, according to a recent Cornell University study.



It’s known that the common vampire bats of Central and South America behave much more like four-legged terrestrial mammals, in that they like to walk around on the ground; other bat species fumble helplessly when left to walk. But researchers in Cornell’s College of Veterinary Medicine have discovered that these bats not only walk but run. The unprecedented gait of Desmodus rotundus is described in a brief communication in this week’s issue of Nature magazine (March 17, 2005) from Daniel Riskin, Cornell graduate student in zoology, and his adviser John W. Hermanson, associate professor of biomedical sciences.

What seemed like a crazy idea -- challenging these bats on an increasingly speedy treadmill -- revealed a novel ability which the researchers believe evolved independently to facilitate feeding behavior. "What we observed was like a horse going from a walk to a gallop over a very short amount of time," Riskin explains. The researchers kept increasing the speed of the treadmill and, much to their surprise, their subjects broke into a run.


"They just seem to do everything a little differently from the general bat rule," Riskin says about what he refers to as the "cute, adorable, big-eyed and family-oriented" vampire bats.

Not only are vampire bats unusual because they run, but also in the way that they power their gait. "Unlike most animals which use their hind legs as a source of power, these exceptional creatures power their run with their forelimbs," Hermanson explains. Getting most of the push from their long forelimbs -- actually their wings and therefore very strong -- the bats run more like a small gorilla than a comparable four-legged creature like a mouse. They run up to about 2.5 miles per hour. Although many of the 1,100 species of bats are known to walk, the common vampire is the only one so far to pass Riskin and Hermanson’s treadmill test and break into a running gait. With the introduction of large herds of livestock into their native environments of Central and South America, these bats don’t need to hurry to catch the cattle from which they extract perhaps a tablespoon of blood at a time for sustenance. They feed while their prey are sleeping, spending perhaps 10 minutes drinking from the small cuts they make. However, running may help them avoid being stepped on, Riskin suggests. More likely, the researchers say, the ability to run evolved long ago, when vampire bats had to prey on faster South American athletes such as the agouti, a rodent about the size of a hare, which might wake up and take a swipe at the nocturnal visitor. It remains unclear exactly what the native prey were before the introduction of cattle, he adds.

The Cornell zoologists plan to go a step further and compare the vampire bat to another species of bat endemic to New Zealand. Riskin explains, "The vampire bat is good on the ground because when you feed on the hoof of an animal that weighs 14,000 times more than you do, it’s dangerous." Also, there are and always have been a variety of predators in the Western Hemisphere environment. In contrast, Riskin says, the bats and birds of New Zealand had no predators to keep them flying. Many of the birds became flightless walkers, and the bats walk more than others, as flight is energetically very expensive.

"Vampire bats in Latin America are good on the ground because it’s a very dangerous place, and bats in New Zealand are good on the ground because it’s a very safe place," Riskin says. While New Zealand bats definitely don’t run -- they failed the treadmill test -- Riskin wants to compare the walking gaits of the two species.

Cornell undergraduate Gerald Carter contributed to the study.

This release was prepared by Cornell News Service science-writing intern Sarah Davidson.

| newswise
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>