Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism of RNA recoding: New twists in brain protein production

17.03.2005


RNA loops and knots guide genetic modifications



University of Connecticut Health Center scientist, Robert Reenan, has uncovered new rules of RNA recoding--a genetic editing method cells use to expand the number of proteins assembled from a single DNA code. According to his work, the shape a particular RNA adopts solely determines how editing enzymes modify the information molecule inside cells. The study may help explain the remarkable adaptability and evolution of animal nervous systems--including the human brain. The work appears in the March 17 issue of Nature.

DNA sequences spell out the instructions for making protein but they aren’t always followed to the letter. Sometimes, the genetic recipe gets edited after cells copy DNA to RNA--a close chemical relative--during transcription. Think of DNA as an unalterable "read only" copy of the genetic code and the RNA as a "writable" working copy that cells can edit extensively--adding, deleting, and modifying the molecular letters and words that guide protein assembly. Often, even simple editing such as changing one letter in an RNA molecule affects the resulting protein’s function. There are many different types of RNA editing.


Reenan’s group studies one particular method called A-to-I RNA recoding. It occurs when an enzyme chemically "retypes" RNA letters at specific locations, changing adenosine (A) to inosine (I). Proteins responsible for fast chemical and electrical signaling in animal nervous systems are the main targets of this process. In a prior study, Reenan’s group identified species-specific patterns of RNA recoding on such targets, but didn’t explain how they were determined or how they may have evolved. His new study does both.

By comparing the same highly edited RNA from over 30 insects, Reenan uncovered some general rules of A-to-I recoding. He observed that the RNA of different insects folds into unique structures. These shapes single-handedly determine the species-specific RNA editing patterns that Reenan previously observed. For example, part of the RNA molecule he focused on--the code for the protein synaptotagmin, a key player in neuronal chemical signaling--looks like a knot in fruit flies, but a loop in butterflies. These molecular knots and loops bring regulatory regions of the RNA together with sites destined for recoding, guiding editing enzymes to act there. As proof, Reenan coaxed fruit fly RNA to adopt a "mosquito-like" structure by making small changes in the molecule--a procedure he dubbed "guided evolution." Predictably, cells edited the reconfigured fly RNA in the mosquito-like pattern.

In all species Reenan studied, the RNA region that regulates folding is located within an intron--a string of non-protein coding letters that cells cut out or "splice" from the molecule during processing. RNA recoding can’t occur without introns, so cells must have a way of slowing down splicing long enough for editing enzymes to do their job. "The structures imply a really strong interaction between splicing and editing," according to Reenan, who notes that, "these complicated structures actually tie up--literally--splicing signals." By making small alterations in introns during evolution, different insects conserved the basic RNA code for making important proteins, but developed a way to tweak the resulting nerve cell protein’s function in a species-specific manner. The species-specific editing may give insects different abilities by modifying behaviors.

According to Joanne Tornow, the National Science Foundation program manager who oversees Reenan’s work, "These findings provide dramatic evidence that intron sequences, which were once thought to serve little purpose of their own, are functionally important in the accurate expression and regulation of these genes. What’s more," she adds, "this work is revealing a new type of genetic code, which incorporates both sequence and structural signals." She anticipates this work, also funded in part by the National Institutes of Health, will "greatly increase our ability to interpret the information encoded in the genome."

Researchers still don’t know why editing occurs, but posit that organisms use it to increase protein variety. RNA recoding lets cells generate an array of proteins from a single DNA sequence, each with a slightly different function. Producing different proteins in a cell at once could let organisms fine tune biological processes with extreme precision--a level of flexibility the DNA code doesn’t afford. "Genetics is digital," says Reenan, adding "Editing changes digital to analog," letting cells "dial up" the exact amounts of altered proteins required at any given time or place.

No matter why organisms do it, one thing is clear--serious problems can occur when RNA editing goes awry. RNA recoding defects cause neurological problems in all of the animals examined to date.

Nicole Mahoney | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>