Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism of RNA recoding: New twists in brain protein production

17.03.2005


RNA loops and knots guide genetic modifications



University of Connecticut Health Center scientist, Robert Reenan, has uncovered new rules of RNA recoding--a genetic editing method cells use to expand the number of proteins assembled from a single DNA code. According to his work, the shape a particular RNA adopts solely determines how editing enzymes modify the information molecule inside cells. The study may help explain the remarkable adaptability and evolution of animal nervous systems--including the human brain. The work appears in the March 17 issue of Nature.

DNA sequences spell out the instructions for making protein but they aren’t always followed to the letter. Sometimes, the genetic recipe gets edited after cells copy DNA to RNA--a close chemical relative--during transcription. Think of DNA as an unalterable "read only" copy of the genetic code and the RNA as a "writable" working copy that cells can edit extensively--adding, deleting, and modifying the molecular letters and words that guide protein assembly. Often, even simple editing such as changing one letter in an RNA molecule affects the resulting protein’s function. There are many different types of RNA editing.


Reenan’s group studies one particular method called A-to-I RNA recoding. It occurs when an enzyme chemically "retypes" RNA letters at specific locations, changing adenosine (A) to inosine (I). Proteins responsible for fast chemical and electrical signaling in animal nervous systems are the main targets of this process. In a prior study, Reenan’s group identified species-specific patterns of RNA recoding on such targets, but didn’t explain how they were determined or how they may have evolved. His new study does both.

By comparing the same highly edited RNA from over 30 insects, Reenan uncovered some general rules of A-to-I recoding. He observed that the RNA of different insects folds into unique structures. These shapes single-handedly determine the species-specific RNA editing patterns that Reenan previously observed. For example, part of the RNA molecule he focused on--the code for the protein synaptotagmin, a key player in neuronal chemical signaling--looks like a knot in fruit flies, but a loop in butterflies. These molecular knots and loops bring regulatory regions of the RNA together with sites destined for recoding, guiding editing enzymes to act there. As proof, Reenan coaxed fruit fly RNA to adopt a "mosquito-like" structure by making small changes in the molecule--a procedure he dubbed "guided evolution." Predictably, cells edited the reconfigured fly RNA in the mosquito-like pattern.

In all species Reenan studied, the RNA region that regulates folding is located within an intron--a string of non-protein coding letters that cells cut out or "splice" from the molecule during processing. RNA recoding can’t occur without introns, so cells must have a way of slowing down splicing long enough for editing enzymes to do their job. "The structures imply a really strong interaction between splicing and editing," according to Reenan, who notes that, "these complicated structures actually tie up--literally--splicing signals." By making small alterations in introns during evolution, different insects conserved the basic RNA code for making important proteins, but developed a way to tweak the resulting nerve cell protein’s function in a species-specific manner. The species-specific editing may give insects different abilities by modifying behaviors.

According to Joanne Tornow, the National Science Foundation program manager who oversees Reenan’s work, "These findings provide dramatic evidence that intron sequences, which were once thought to serve little purpose of their own, are functionally important in the accurate expression and regulation of these genes. What’s more," she adds, "this work is revealing a new type of genetic code, which incorporates both sequence and structural signals." She anticipates this work, also funded in part by the National Institutes of Health, will "greatly increase our ability to interpret the information encoded in the genome."

Researchers still don’t know why editing occurs, but posit that organisms use it to increase protein variety. RNA recoding lets cells generate an array of proteins from a single DNA sequence, each with a slightly different function. Producing different proteins in a cell at once could let organisms fine tune biological processes with extreme precision--a level of flexibility the DNA code doesn’t afford. "Genetics is digital," says Reenan, adding "Editing changes digital to analog," letting cells "dial up" the exact amounts of altered proteins required at any given time or place.

No matter why organisms do it, one thing is clear--serious problems can occur when RNA editing goes awry. RNA recoding defects cause neurological problems in all of the animals examined to date.

Nicole Mahoney | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>