Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis researchers discover new link between C-reactive protein, and heart disease and stroke

17.03.2005


The cells that line the arteries are able to produce C-reactive protein, according to a study funded by the National Institutes of Health and published in the April issue of American Journal of Pathology.



C-reactive protein is a risk marker for heart disease and is known to be produced in the liver, but UC Davis School of Medicine researchers Ishwarlal Jialal and Sridevi Devaraj found that endothelial cells also produce C-reactive protein, a key finding that helps to explain how plaque formation is initiated. This is particularly important because endothelial cells are supposed to protect the arteries from C-reactive protein.

"This is an extremely important finding," says Jialal, professor of pathology and internal medicine and director of the Laboratory for Atherosclerosis and Metabolic Research at UC Davis Medical Center. "We have convincingly demonstrated in this paper that aortic and coronary artery endothelial cells produce and secrete C-reactive protein. We also showed within the artery, mature white cells, called macrophages, make chemical messengers, cytokines, which enhance the C-reactive protein secretion by endothelial cells at least 10-fold.


"This tells us that there is cross-talk in the active plaque where these cells act in concert to cause very high C-reactive protein levels in the atheroma, which is the accumulation of plaque on the innermost layer of the artery," Jialal said. "The C-reactive protein produced by endothelial cells can not only act on the endothelial cells, but also on macrophages and smooth muscle cells in the atheroma. This creates a vicious cycle, leading to plaque instability and rupture, and ultimately heart attacks and strokes."

Work at UC Davis and other institutions has shown that C-reactive protein induces endothelial cell dysfunction, thus promoting plaque formation. C-reactive protein causes endothelial cells to produce less nitric oxide and to increase the number of cell adhesion molecules. This, in turn, allows damaging leukocytes to enter the vessels. Devaraj and Jialal also showed that C-reactive protein induces endothelial cells to produce plasminogen activator inhibitor, or PAI-1, which promotes clot formation. In addition, recent studies suggest that plaque tissue also produces C-reactive protein.

Coronary heart disease is the nation’s single leading cause of death. According to the American Heart Association, approximately 1.2 million Americans will have a coronary attack this year. Almost a half million of these people will die. About 7.1 million Americans have survived a heart attack. And another 6.4 million Americans have experienced chest pain or discomfort due to reduced blood supply to the heart.

The good news is that reducing the concentration of C-reactive protein with targeted drugs, such as statins, has been shown to reduce cardiovascular events. Treating other risk factors such as smoking, obesity, high blood pressure and high cholesterol are also shown to reduce the levels of C-reactive protein.

Senthil Kumar Venugopal, a postgraduate researcher in the Laboratory of Atherosclerosis and Metabolic Research participated in the study.

Kelly Gastman | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>