Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutant Protein Developed By Hebrew University Scientists

17.03.2005


A unique technique for neutralizing the action of the leptin protein in humans and animals – thereby providing a means for controlling and better understanding of leptin function, including its role in unwanted cell growth -- has been developed by researchers at the Hebrew University of Jerusalem.


Three-dimensional structure of leptin. The region identified in the picture by numbers as amino acids 39, 40, 41, 42 underwent mutation that converted the normal leptin into an “antagonistic” version.



Leptin was discovered ten years ago and has attracted attention first because of its involvement in control of appetite and later by its effect on growth, puberty, digestion and immunological processes. Leptin can also have negative consequences, such as, for example, enhancing the spread of tumorous growths.

In his laboratory at the Hebrew University’s Faculty of Agricultural Food and Environmental Quality Sciences in Rehovot, Arieh Gertler, the Karl Bach Professor of Agricultural Biochemistry, along with his students, has developed a technique for genetically engineering mutations of the leptin protein. Prof. Gertler has been assisted in this work by graduate students Dana Gonen-Berger and Leonora Niv-Spector.and research assistant Gili Benyehuda.


In experimental work carried out cooperatively with researchers at the Agronomic Research Institute of France and the University of Paris VI, the scientists have developed a model showing which amino acids in leptin are responsible for activating leptin receptors in living cells. By replacing these amino acids with others, they were able to create a leptin variant that could bind with cell receptors, but would be unable to activate them, thereby providing a unique, novel research tool. In this way, the mutated leptin, with the substituted amino acids, acts as an “antagonist,” competing with the normal leptin for the “attention” of the cell receptors to which both leptins are attracted. The result is a “standoff” situation in which the normal leptin is neutralized.

Since leptin is involved in several cell functions, the development of this mutated “antagonistic leptin” could have significant consequences not only for better understanding of leptin action in animals but also on halting undesirable leptin effects in humans, such as undesired cell proliferation in cancer, or in controlling other pathological phenomena in which leptin is a factor.

Thus far, the researchers have succeeded in creating antagonists of human, sheep, rat and mouse leptins.

A company, Protein Laboratories Rehovot (PLR), that was formed by Prof. Gertler and the Hebrew University’s Yissum Research Development Company 18 months ago, was given the license to produce and market the mutated leptin products. Further development is currently being pursued towards testing whether leptin antagonists are capable of anti-cancer activity. This work is being pursued in cooperation with Prof. Nira Ben-Jonathan of the University of Cincinnati in the U.S., with the assistance of Prof. Gertler’s graduate student, Gila Ben Avraham.

Prof. Gertler has presented his work at a symposium of the Israeli Endocrinology Society and most recently at an international biotechnological conference in Miami, Fla., sponsored by the scientific journal Nature.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>