Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mutant Protein Developed By Hebrew University Scientists


A unique technique for neutralizing the action of the leptin protein in humans and animals – thereby providing a means for controlling and better understanding of leptin function, including its role in unwanted cell growth -- has been developed by researchers at the Hebrew University of Jerusalem.

Three-dimensional structure of leptin. The region identified in the picture by numbers as amino acids 39, 40, 41, 42 underwent mutation that converted the normal leptin into an “antagonistic” version.

Leptin was discovered ten years ago and has attracted attention first because of its involvement in control of appetite and later by its effect on growth, puberty, digestion and immunological processes. Leptin can also have negative consequences, such as, for example, enhancing the spread of tumorous growths.

In his laboratory at the Hebrew University’s Faculty of Agricultural Food and Environmental Quality Sciences in Rehovot, Arieh Gertler, the Karl Bach Professor of Agricultural Biochemistry, along with his students, has developed a technique for genetically engineering mutations of the leptin protein. Prof. Gertler has been assisted in this work by graduate students Dana Gonen-Berger and Leonora Niv-Spector.and research assistant Gili Benyehuda.

In experimental work carried out cooperatively with researchers at the Agronomic Research Institute of France and the University of Paris VI, the scientists have developed a model showing which amino acids in leptin are responsible for activating leptin receptors in living cells. By replacing these amino acids with others, they were able to create a leptin variant that could bind with cell receptors, but would be unable to activate them, thereby providing a unique, novel research tool. In this way, the mutated leptin, with the substituted amino acids, acts as an “antagonist,” competing with the normal leptin for the “attention” of the cell receptors to which both leptins are attracted. The result is a “standoff” situation in which the normal leptin is neutralized.

Since leptin is involved in several cell functions, the development of this mutated “antagonistic leptin” could have significant consequences not only for better understanding of leptin action in animals but also on halting undesirable leptin effects in humans, such as undesired cell proliferation in cancer, or in controlling other pathological phenomena in which leptin is a factor.

Thus far, the researchers have succeeded in creating antagonists of human, sheep, rat and mouse leptins.

A company, Protein Laboratories Rehovot (PLR), that was formed by Prof. Gertler and the Hebrew University’s Yissum Research Development Company 18 months ago, was given the license to produce and market the mutated leptin products. Further development is currently being pursued towards testing whether leptin antagonists are capable of anti-cancer activity. This work is being pursued in cooperation with Prof. Nira Ben-Jonathan of the University of Cincinnati in the U.S., with the assistance of Prof. Gertler’s graduate student, Gila Ben Avraham.

Prof. Gertler has presented his work at a symposium of the Israeli Endocrinology Society and most recently at an international biotechnological conference in Miami, Fla., sponsored by the scientific journal Nature.

Jerry Barach | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>