Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Loss of sulphur atom reduces activity of catalyst


Chemical catalysts used to produce clean fuels gradually become less active. Dutch researcher Bas Vogelaar believes that the loss of sulphur atoms might be an important cause of this. He investigated hydroprocessing catalysts which remove sulphur compounds from petrol and diesel.

Crude oil contains sulphur compounds which form sulphur oxides during the combustion process. These sulphur oxides are an important source of acid rain.

Hydroprocessing catalysts are used in oil refineries to remove these sulphur compounds in order to produce clean fuels. After two years of use, the hydroprocessing catalysts have lost so much of their activity that they need to be replaced. This is an intensive and expensive operation. Vogelaar established the most important causes for the deactivation of hydroprocessing catalysts in order to increase the lifetime of these.

A hydroprocessing catalyst consists of a carrier of aluminium oxide, to which various active metals are added. A so-called active phase is created on the surface of the catalyst. The chemical reactions during which the sulphur is removed take place here. The active phase consists of a combination of molybdenum, sulphur and nickel or cobalt.


Small graphite-like particles accumulating on the hydroprocessing catalysts are one of the causes of the decrease in activity. Vogelaar discovered that this ’coke’ mainly precipitates on the carrier. He believes that the active phase has a ’self-cleaning’ effect, which can counteract the precipitation of coke. The researcher discovered that under model conditions, the activity of the catalysts mainly decreases due to the loss of sulphur from the catalyst. This process might also play a role in the deactivation of these catalysts during the production of clean fuels.


Catalysts can convert sulphur compounds in two ways. The sulphur atom is directly removed from the compound or a chemical reaction (hydrogenation) takes place after which the atom is removed. The results of Vogelaar refute the generally accepted theory that for both mechanisms a sulphur atom must first of all be removed from the active phase. For the direct removal of sulphur a so-called ’vacant position’ is indeed necessary. The hydrogenation step however takes place on sulphur atoms at the edge of the active phase and not on the ’vacant positions’. Vogelaar has used these results to produce a detailed model for the structure of the active phase. He has also developed a model which describes the desulphurisation reaction mechanism.

Dr Bas Vogelaar | alfa
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>