Researchers Discover Chemical Compounds that Help Plants Deal with Gravity

Biologists identify chemicals affecting plant growth in response to gravity


A team of biologists from the University of California, Riverside has used chemical genomics to identify novel compounds that affect the ability of plants to alter their direction of growth in response to gravity, a phenomenon known as gravitropism.

The researchers screened a library of 10,000 small molecules, the practice is known as chemical genomics, to identify those that could positively or negatively affect gravity’s effect on plant growth, which is closely linked to the movement of proteins through plant cell membranes, a process known as endomembrane trafficking. “Well-characterized bioactive chemicals and their targets identified in the model plant, Arabidopsis, can be used in non-model species to improve agronomic traits and increase crop value,” said research team leader, Distinguished Professor of Plant Cell Biology Natasha Raikhel.

The team published its findings in the Proceedings of the National Academy of Sciences Online Early Edition of March 14 in a paper titled, “The Power of Chemical Genomics to Study the Link between Endomembrane System Components and Gravitropic Response.” Her team included equal contributions from UCR colleagues Marci Surpin, Marcela Pierce-Rojas, Clay Carter, Glenn R. Hicks. Co-author Jacob Vasquez originally came to the Raikhel lab from San Bernardino Valley College as a participant in the National Science Foundation’s Research Experiences for Undergraduates (REU) program in 2003 and has remained to contribute to research efforts while studying at UCR.

The team’s chemical genomics approach focuses on the use of small molecules to modify or disrupt the functions of specific genes or proteins. NASA supported the research. “This contrasts with classical genetics, in which mutations disrupt gene function,” Raikhel said. “The underlying concept is that the functions of most proteins can be altered by the binding of a chemical, which can be found by screening large libraries for compounds that specifically affect a measurable process.”

The scientists found 219 chemicals that affected the direction of plant growth due to gravity. Further screens reduced this number to 34, then down to 4 chemicals, which affected gravitropism and the movement of proteins through membranes within the plant cell. Only one of these resembled auxins, a plant-produced growth hormone involved in gravitropic responses, while two of the four did not work through known auxin pathways. One of the chemicals resembled pyocyanin a product of bacterial metabolism thought to target yeast cell membranes. With chemical genomics, the team could identify valuable genetic characteristics beyond the reach of conventional mutations, which are often lethal when present in essential genes such as those that encode many cellular membrane components. Combined with the formidable genetic mapping and information available from the Arabidopsis plant, chemical genomics is becoming a powerful new tool in plant biology. It is helping scientists better understand protein transportation and genetic signaling in a plant’s cellular membrane system, which is essential to plant growth, yet is poorly understood.

The researchers can now use the compounds they have discovered to identify target pathways and proteins within the endomembrane system.

The University of California, Riverside is a major research institution and a national center for the humanities. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of nearly 17,000, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development. Visit www.ucr.edu or call 951-UCR-NEWS for more information. Media sources are available at http://www.mediasources.ucr.edu/.

Media Contact

Ricardo Duran EurekAlert!

More Information:

http://www.ucr.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors