Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Discover Chemical Compounds that Help Plants Deal with Gravity


Biologists identify chemicals affecting plant growth in response to gravity

A team of biologists from the University of California, Riverside has used chemical genomics to identify novel compounds that affect the ability of plants to alter their direction of growth in response to gravity, a phenomenon known as gravitropism.

The researchers screened a library of 10,000 small molecules, the practice is known as chemical genomics, to identify those that could positively or negatively affect gravity’s effect on plant growth, which is closely linked to the movement of proteins through plant cell membranes, a process known as endomembrane trafficking. “Well-characterized bioactive chemicals and their targets identified in the model plant, Arabidopsis, can be used in non-model species to improve agronomic traits and increase crop value,” said research team leader, Distinguished Professor of Plant Cell Biology Natasha Raikhel.

The team published its findings in the Proceedings of the National Academy of Sciences Online Early Edition of March 14 in a paper titled, "The Power of Chemical Genomics to Study the Link between Endomembrane System Components and Gravitropic Response." Her team included equal contributions from UCR colleagues Marci Surpin, Marcela Pierce-Rojas, Clay Carter, Glenn R. Hicks. Co-author Jacob Vasquez originally came to the Raikhel lab from San Bernardino Valley College as a participant in the National Science Foundation’s Research Experiences for Undergraduates (REU) program in 2003 and has remained to contribute to research efforts while studying at UCR.

The team’s chemical genomics approach focuses on the use of small molecules to modify or disrupt the functions of specific genes or proteins. NASA supported the research. “This contrasts with classical genetics, in which mutations disrupt gene function,” Raikhel said. “The underlying concept is that the functions of most proteins can be altered by the binding of a chemical, which can be found by screening large libraries for compounds that specifically affect a measurable process.”

The scientists found 219 chemicals that affected the direction of plant growth due to gravity. Further screens reduced this number to 34, then down to 4 chemicals, which affected gravitropism and the movement of proteins through membranes within the plant cell. Only one of these resembled auxins, a plant-produced growth hormone involved in gravitropic responses, while two of the four did not work through known auxin pathways. One of the chemicals resembled pyocyanin a product of bacterial metabolism thought to target yeast cell membranes. With chemical genomics, the team could identify valuable genetic characteristics beyond the reach of conventional mutations, which are often lethal when present in essential genes such as those that encode many cellular membrane components. Combined with the formidable genetic mapping and information available from the Arabidopsis plant, chemical genomics is becoming a powerful new tool in plant biology. It is helping scientists better understand protein transportation and genetic signaling in a plant’s cellular membrane system, which is essential to plant growth, yet is poorly understood.

The researchers can now use the compounds they have discovered to identify target pathways and proteins within the endomembrane system.

The University of California, Riverside is a major research institution and a national center for the humanities. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of nearly 17,000, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development. Visit or call 951-UCR-NEWS for more information. Media sources are available at

Ricardo Duran | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>