Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Chemical Compounds that Help Plants Deal with Gravity

16.03.2005


Biologists identify chemicals affecting plant growth in response to gravity



A team of biologists from the University of California, Riverside has used chemical genomics to identify novel compounds that affect the ability of plants to alter their direction of growth in response to gravity, a phenomenon known as gravitropism.

The researchers screened a library of 10,000 small molecules, the practice is known as chemical genomics, to identify those that could positively or negatively affect gravity’s effect on plant growth, which is closely linked to the movement of proteins through plant cell membranes, a process known as endomembrane trafficking. “Well-characterized bioactive chemicals and their targets identified in the model plant, Arabidopsis, can be used in non-model species to improve agronomic traits and increase crop value,” said research team leader, Distinguished Professor of Plant Cell Biology Natasha Raikhel.


The team published its findings in the Proceedings of the National Academy of Sciences Online Early Edition of March 14 in a paper titled, "The Power of Chemical Genomics to Study the Link between Endomembrane System Components and Gravitropic Response." Her team included equal contributions from UCR colleagues Marci Surpin, Marcela Pierce-Rojas, Clay Carter, Glenn R. Hicks. Co-author Jacob Vasquez originally came to the Raikhel lab from San Bernardino Valley College as a participant in the National Science Foundation’s Research Experiences for Undergraduates (REU) program in 2003 and has remained to contribute to research efforts while studying at UCR.

The team’s chemical genomics approach focuses on the use of small molecules to modify or disrupt the functions of specific genes or proteins. NASA supported the research. “This contrasts with classical genetics, in which mutations disrupt gene function,” Raikhel said. “The underlying concept is that the functions of most proteins can be altered by the binding of a chemical, which can be found by screening large libraries for compounds that specifically affect a measurable process.”

The scientists found 219 chemicals that affected the direction of plant growth due to gravity. Further screens reduced this number to 34, then down to 4 chemicals, which affected gravitropism and the movement of proteins through membranes within the plant cell. Only one of these resembled auxins, a plant-produced growth hormone involved in gravitropic responses, while two of the four did not work through known auxin pathways. One of the chemicals resembled pyocyanin a product of bacterial metabolism thought to target yeast cell membranes. With chemical genomics, the team could identify valuable genetic characteristics beyond the reach of conventional mutations, which are often lethal when present in essential genes such as those that encode many cellular membrane components. Combined with the formidable genetic mapping and information available from the Arabidopsis plant, chemical genomics is becoming a powerful new tool in plant biology. It is helping scientists better understand protein transportation and genetic signaling in a plant’s cellular membrane system, which is essential to plant growth, yet is poorly understood.

The researchers can now use the compounds they have discovered to identify target pathways and proteins within the endomembrane system.

The University of California, Riverside is a major research institution and a national center for the humanities. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of nearly 17,000, the campus is projected to grow to 21,000 students by 2010. Located in the heart of inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development. Visit www.ucr.edu or call 951-UCR-NEWS for more information. Media sources are available at http://www.mediasources.ucr.edu/.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>